Wnt inhibition induces persistent increases in intrinsic stiffness of human trabecular meshwork cells

Joshua T. Morgan, Vijay Krishna Raghunathan, Yow Ren Chang, Christopher J Murphy, Paul Russell

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Wnt antagonism has been linked to glaucoma and intraocular pressure regulation, as has increased stiffness of human trabecular meshwork (HTM) tissue. We have shown culturing HTM cells on substrates that mimic the elevated stiffness of glaucomatous tissue leads to elevated expression of the Wnt antagonist secreted frizzled related protein 1 (SFRP1), suggesting a linkage between SFRP1 and HTM mechanobiology. In this study, we document biomechanical consequences of Wnt antagonism on HTM cells. Cells were treated with the Wnt antagonists (SFRP1, KY02111, and LGK-974) for 8 days and allowed to recover for 4 days. After recovery, intrinsic cell stiffness and activation of the Wnt pathway via β-catenin staining and blotting were assayed. Basal cell stiffness values were 3.71±0.37, 4.33±3.07, and 3.07±kPa (median±S.D.) for cells derived from 3 donors. Cell stiffness increased after 0.25μg/mL (4.32±5.12, 8.86±8.51, 4.84±3.15kPa) and 0.5μg/mL (16.75±5.59, 13.18±7.99, and 8.54±5.77kPa) SFRP1 treatment. Stiffening was observed after 10μM KY02111 (10.72±5.63 and 6.57±5.53kPa) as well as LGK-974 (9.60±7.41 and 11.40±9.24kPa) treatment compared with controls (3.79±1.01 and 5.16±2.14kPa). Additionally, Wnt inhibition resulted in decreased β-catenin staining and increased phosphorylation at threonine 41 after recovery. In conclusion, this work demonstrates a causal relationship between Wnt inhibition and cell stiffening. Additionally, these findings suggest transient Wnt inhibition resulted in durable modulation of the mechanical phenotype of HTM cells. When placed in context with previous results, these findings provide a causal link between Wnt antagonism and cell stiffness and suggest a feedback loop contributing to glaucoma progression.

Original languageEnglish (US)
Pages (from-to)174-178
Number of pages5
JournalExperimental Eye Research
Volume132
DOIs
StatePublished - Mar 1 2015

Keywords

  • Atomic force microscopy
  • Cell stiffness
  • Human trabecular meshwork
  • Secreted frizzled related protein
  • Wnt

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Wnt inhibition induces persistent increases in intrinsic stiffness of human trabecular meshwork cells'. Together they form a unique fingerprint.

Cite this