Whole-cell recording of Calcium Release-Activated Calcium (CRAC) currents in human T lymphocytes

Pratima Thakur, Alla F Fomina

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

In T lymphocytes, depletion of Ca2+ from the intracellular Ca2+ store leads to activation of plasmalemmal Ca2+ channels, called Calcium Release-Activated Calcium (CRAC) channels. CRAC channels play important role in regulation of T cell proliferation and gene expression. Abnormal CRAC channel function in T cells has been linked to severe combined immunodeficiency and autoimmune diseases. Studying CRAC channel function in human T cells may uncover new molecular mechanisms regulating normal immune responses and unravel the causes of related human diseases. Electrophysiological recordings of membrane currents provide the most accurate assessment of functional channel properties and their regulation. Electrophysiological assessment of CRAC channel currents in Jurkat T cells, a human leukemia T cell line, was first performed more than 20 years ago, however, CRAC current measurements in normal human T cells remains a challenging task. The difficulties in recording CRAC channel currents in normal T cells are compounded by the fact that blood-derived T lymphocytes are much smaller in size than Jurkat T cells and, therefore, the endogenous whole-cell CRAC currents are very low in amplitude. Here, we give a step-by-step procedure that we routinely use to record the Ca2+ or Na+ currents via CRAC channels in resting human T cells isolated from the peripheral blood of healthy volunteers. The method described here was adopted from the procedures used for recording the CRAC currents in Jurkat T cells and activated human T cells.

Original languageEnglish (US)
Article numbere2346
JournalJournal of Visualized Experiments
Issue number46
DOIs
StatePublished - Dec 2010

Keywords

  • CRAC channels
  • CRAC currents
  • Human T lymphocytes
  • Patch-clamp

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemical Engineering(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Whole-cell recording of Calcium Release-Activated Calcium (CRAC) currents in human T lymphocytes'. Together they form a unique fingerprint.

  • Cite this