Visual physiology of the lateral geniculate nucleus in two species of New World monkey: Saimiri sciureus and Aotus trivirgatis

William Martin Usrey, R. Clay Reid

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

1. Visual responses were recorded from neurones in the magnocellular and parvocellular layers of the lateral geniculate nucleus (LGN) of the thalamus in two species of New World monkeys - the diurnal squirrel monkey (Saimiri sciureus) and the nocturnal owl monkey (Aotus trivirgatis). Recording sites were reconstructed in postmortem tissue and comparisons were made between the response properties of magnocellular and parvocellular neurones. 2. Receptive fields were characterized with both white noise and drifting gratings. We found that most of the differences between magnocellular and parvocellular neurones that have been described in the macaque monkey hold for the squirrel monkey and owl monkey. In squirrel monkey and owl monkey, receptive fields of magnocellular neurones were larger than those of parvocellular neurones at similar eccentricities. Although visual responses in the owl monkey were significantly slower than in the squirrel monkey, in both species magnocellular neurones differed from parvocellular neurones in that their responses (1) had higher contrast gains, (2) tended to peak at higher temporal frequencies (but with considerable overlap), (3) had shorter response latencies, and (4) were more transient. 3. The strength of a neurone's receptive-field surround was assessed by comparing neuronal responses to gratings of optimal spatial frequency with responses to gratings of low spatial frequency. Using this approach, receptive-field surrounds were found to be equally strong on average for magnocellular and parvocellular neurones. 4. Spatial summation, as measured by a null test, was linear for all magnocellular and parvocellular cells tested; that is, Y cells were not observed in either species. Finally, most magnocellular neurones showed a contrast gain control mechanism, although this was not seen for parvocellular neurones.

Original languageEnglish (US)
Pages (from-to)755-769
Number of pages15
JournalJournal of Physiology
Volume523
Issue number3
StatePublished - Mar 15 2000

Fingerprint

Ocular Physiological Phenomena
Platyrrhini
Geniculate Bodies
Saimiri
Neurons
Aotidae
Lateral Thalamic Nuclei
Macaca
Reaction Time
Haplorhini

ASJC Scopus subject areas

  • Physiology

Cite this

Visual physiology of the lateral geniculate nucleus in two species of New World monkey : Saimiri sciureus and Aotus trivirgatis. / Usrey, William Martin; Reid, R. Clay.

In: Journal of Physiology, Vol. 523, No. 3, 15.03.2000, p. 755-769.

Research output: Contribution to journalArticle

@article{7e3cdd2c28ff44f4ac3ba1da67d04c9b,
title = "Visual physiology of the lateral geniculate nucleus in two species of New World monkey: Saimiri sciureus and Aotus trivirgatis",
abstract = "1. Visual responses were recorded from neurones in the magnocellular and parvocellular layers of the lateral geniculate nucleus (LGN) of the thalamus in two species of New World monkeys - the diurnal squirrel monkey (Saimiri sciureus) and the nocturnal owl monkey (Aotus trivirgatis). Recording sites were reconstructed in postmortem tissue and comparisons were made between the response properties of magnocellular and parvocellular neurones. 2. Receptive fields were characterized with both white noise and drifting gratings. We found that most of the differences between magnocellular and parvocellular neurones that have been described in the macaque monkey hold for the squirrel monkey and owl monkey. In squirrel monkey and owl monkey, receptive fields of magnocellular neurones were larger than those of parvocellular neurones at similar eccentricities. Although visual responses in the owl monkey were significantly slower than in the squirrel monkey, in both species magnocellular neurones differed from parvocellular neurones in that their responses (1) had higher contrast gains, (2) tended to peak at higher temporal frequencies (but with considerable overlap), (3) had shorter response latencies, and (4) were more transient. 3. The strength of a neurone's receptive-field surround was assessed by comparing neuronal responses to gratings of optimal spatial frequency with responses to gratings of low spatial frequency. Using this approach, receptive-field surrounds were found to be equally strong on average for magnocellular and parvocellular neurones. 4. Spatial summation, as measured by a null test, was linear for all magnocellular and parvocellular cells tested; that is, Y cells were not observed in either species. Finally, most magnocellular neurones showed a contrast gain control mechanism, although this was not seen for parvocellular neurones.",
author = "Usrey, {William Martin} and Reid, {R. Clay}",
year = "2000",
month = "3",
day = "15",
language = "English (US)",
volume = "523",
pages = "755--769",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - Visual physiology of the lateral geniculate nucleus in two species of New World monkey

T2 - Saimiri sciureus and Aotus trivirgatis

AU - Usrey, William Martin

AU - Reid, R. Clay

PY - 2000/3/15

Y1 - 2000/3/15

N2 - 1. Visual responses were recorded from neurones in the magnocellular and parvocellular layers of the lateral geniculate nucleus (LGN) of the thalamus in two species of New World monkeys - the diurnal squirrel monkey (Saimiri sciureus) and the nocturnal owl monkey (Aotus trivirgatis). Recording sites were reconstructed in postmortem tissue and comparisons were made between the response properties of magnocellular and parvocellular neurones. 2. Receptive fields were characterized with both white noise and drifting gratings. We found that most of the differences between magnocellular and parvocellular neurones that have been described in the macaque monkey hold for the squirrel monkey and owl monkey. In squirrel monkey and owl monkey, receptive fields of magnocellular neurones were larger than those of parvocellular neurones at similar eccentricities. Although visual responses in the owl monkey were significantly slower than in the squirrel monkey, in both species magnocellular neurones differed from parvocellular neurones in that their responses (1) had higher contrast gains, (2) tended to peak at higher temporal frequencies (but with considerable overlap), (3) had shorter response latencies, and (4) were more transient. 3. The strength of a neurone's receptive-field surround was assessed by comparing neuronal responses to gratings of optimal spatial frequency with responses to gratings of low spatial frequency. Using this approach, receptive-field surrounds were found to be equally strong on average for magnocellular and parvocellular neurones. 4. Spatial summation, as measured by a null test, was linear for all magnocellular and parvocellular cells tested; that is, Y cells were not observed in either species. Finally, most magnocellular neurones showed a contrast gain control mechanism, although this was not seen for parvocellular neurones.

AB - 1. Visual responses were recorded from neurones in the magnocellular and parvocellular layers of the lateral geniculate nucleus (LGN) of the thalamus in two species of New World monkeys - the diurnal squirrel monkey (Saimiri sciureus) and the nocturnal owl monkey (Aotus trivirgatis). Recording sites were reconstructed in postmortem tissue and comparisons were made between the response properties of magnocellular and parvocellular neurones. 2. Receptive fields were characterized with both white noise and drifting gratings. We found that most of the differences between magnocellular and parvocellular neurones that have been described in the macaque monkey hold for the squirrel monkey and owl monkey. In squirrel monkey and owl monkey, receptive fields of magnocellular neurones were larger than those of parvocellular neurones at similar eccentricities. Although visual responses in the owl monkey were significantly slower than in the squirrel monkey, in both species magnocellular neurones differed from parvocellular neurones in that their responses (1) had higher contrast gains, (2) tended to peak at higher temporal frequencies (but with considerable overlap), (3) had shorter response latencies, and (4) were more transient. 3. The strength of a neurone's receptive-field surround was assessed by comparing neuronal responses to gratings of optimal spatial frequency with responses to gratings of low spatial frequency. Using this approach, receptive-field surrounds were found to be equally strong on average for magnocellular and parvocellular neurones. 4. Spatial summation, as measured by a null test, was linear for all magnocellular and parvocellular cells tested; that is, Y cells were not observed in either species. Finally, most magnocellular neurones showed a contrast gain control mechanism, although this was not seen for parvocellular neurones.

UR - http://www.scopus.com/inward/record.url?scp=0034653606&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034653606&partnerID=8YFLogxK

M3 - Article

C2 - 10718753

AN - SCOPUS:0034653606

VL - 523

SP - 755

EP - 769

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 3

ER -