Virologic and immunologic aspects of feline infectious peritonitis virus infection.

Research output: Contribution to journalReview article

99 Citations (Scopus)

Abstract

A number of feline coronavirus isolates have been characterized over the last few years. These isolates consist of what we have referred to as feline enteric coronaviruses (FECVs) and feline infectious peritonitis viruses (FIPVs). FECVs cause a transient enteritis in kittens but no systemic illness. FIPVs, in contrast, cause a systemic and usually fatal disease syndrome characterized either by an exudative serositis or a disseminated granulomatous disease. Although the diseases they cause are quite different, FECVs and FIPVs are antigenically and morphologically indistinguishable from each other. FECVs have a strict tropism for mature intestinal epithelial cells and do not appear to replicate in macrophages. In contrast, FIPVs, appear to spread rapidly from the intestinal mucosa and replicate in macrophages. Experiments will be presented, and literature cited, that will allow us to make the following assumptions about the pathogenesis of FIPV infection: 1) FIPVs and FECVs represent a spectrum of viruses that differ only in infectivity (ability to evoke seroconversion following oral infection) and virulence (ability to cause FIP), 2) field isolates are generally nearer to FECVs in behavior than laboratory isolates made from animal passaged material, 3) immunity to FIPV appears to be of the premunition type and is maintained for as long as the infection persists in a reactivatable form, 4) strains of feline coronaviruses that do not cause systemic disease, such as FECVs or low virulence FIPVs, can actually sensitize cats to infection with virulent FIPV strains, 5) FeLV infection interferes with established FIP immunity and allows for the reactivation of disease in healthy carriers, 6) FIPV may be passaged from queen to kitten either in utero or during neonatal life, and 7) kittens infected by their mothers with FIPV do not usually develop FIP but become immune carriers of the virus for a period of 5-6 months; recovery from the carrier state is associated with a loss of premunition immunity.

Original languageEnglish (US)
Pages (from-to)529-550
Number of pages22
JournalAdvances in Experimental Medicine and Biology
Volume218
StatePublished - 1987

Fingerprint

Feline Coronavirus
Virus Diseases
Viruses
Macrophages
Immunity
Aptitude
Infection
Virulence

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Virologic and immunologic aspects of feline infectious peritonitis virus infection. / Pedersen, Niels C.

In: Advances in Experimental Medicine and Biology, Vol. 218, 1987, p. 529-550.

Research output: Contribution to journalReview article

@article{9a067910f54f4aafa3c6e157402c89b7,
title = "Virologic and immunologic aspects of feline infectious peritonitis virus infection.",
abstract = "A number of feline coronavirus isolates have been characterized over the last few years. These isolates consist of what we have referred to as feline enteric coronaviruses (FECVs) and feline infectious peritonitis viruses (FIPVs). FECVs cause a transient enteritis in kittens but no systemic illness. FIPVs, in contrast, cause a systemic and usually fatal disease syndrome characterized either by an exudative serositis or a disseminated granulomatous disease. Although the diseases they cause are quite different, FECVs and FIPVs are antigenically and morphologically indistinguishable from each other. FECVs have a strict tropism for mature intestinal epithelial cells and do not appear to replicate in macrophages. In contrast, FIPVs, appear to spread rapidly from the intestinal mucosa and replicate in macrophages. Experiments will be presented, and literature cited, that will allow us to make the following assumptions about the pathogenesis of FIPV infection: 1) FIPVs and FECVs represent a spectrum of viruses that differ only in infectivity (ability to evoke seroconversion following oral infection) and virulence (ability to cause FIP), 2) field isolates are generally nearer to FECVs in behavior than laboratory isolates made from animal passaged material, 3) immunity to FIPV appears to be of the premunition type and is maintained for as long as the infection persists in a reactivatable form, 4) strains of feline coronaviruses that do not cause systemic disease, such as FECVs or low virulence FIPVs, can actually sensitize cats to infection with virulent FIPV strains, 5) FeLV infection interferes with established FIP immunity and allows for the reactivation of disease in healthy carriers, 6) FIPV may be passaged from queen to kitten either in utero or during neonatal life, and 7) kittens infected by their mothers with FIPV do not usually develop FIP but become immune carriers of the virus for a period of 5-6 months; recovery from the carrier state is associated with a loss of premunition immunity.",
author = "Pedersen, {Niels C}",
year = "1987",
language = "English (US)",
volume = "218",
pages = "529--550",
journal = "Advances in Experimental Medicine and Biology",
issn = "0065-2598",
publisher = "Springer New York",

}

TY - JOUR

T1 - Virologic and immunologic aspects of feline infectious peritonitis virus infection.

AU - Pedersen, Niels C

PY - 1987

Y1 - 1987

N2 - A number of feline coronavirus isolates have been characterized over the last few years. These isolates consist of what we have referred to as feline enteric coronaviruses (FECVs) and feline infectious peritonitis viruses (FIPVs). FECVs cause a transient enteritis in kittens but no systemic illness. FIPVs, in contrast, cause a systemic and usually fatal disease syndrome characterized either by an exudative serositis or a disseminated granulomatous disease. Although the diseases they cause are quite different, FECVs and FIPVs are antigenically and morphologically indistinguishable from each other. FECVs have a strict tropism for mature intestinal epithelial cells and do not appear to replicate in macrophages. In contrast, FIPVs, appear to spread rapidly from the intestinal mucosa and replicate in macrophages. Experiments will be presented, and literature cited, that will allow us to make the following assumptions about the pathogenesis of FIPV infection: 1) FIPVs and FECVs represent a spectrum of viruses that differ only in infectivity (ability to evoke seroconversion following oral infection) and virulence (ability to cause FIP), 2) field isolates are generally nearer to FECVs in behavior than laboratory isolates made from animal passaged material, 3) immunity to FIPV appears to be of the premunition type and is maintained for as long as the infection persists in a reactivatable form, 4) strains of feline coronaviruses that do not cause systemic disease, such as FECVs or low virulence FIPVs, can actually sensitize cats to infection with virulent FIPV strains, 5) FeLV infection interferes with established FIP immunity and allows for the reactivation of disease in healthy carriers, 6) FIPV may be passaged from queen to kitten either in utero or during neonatal life, and 7) kittens infected by their mothers with FIPV do not usually develop FIP but become immune carriers of the virus for a period of 5-6 months; recovery from the carrier state is associated with a loss of premunition immunity.

AB - A number of feline coronavirus isolates have been characterized over the last few years. These isolates consist of what we have referred to as feline enteric coronaviruses (FECVs) and feline infectious peritonitis viruses (FIPVs). FECVs cause a transient enteritis in kittens but no systemic illness. FIPVs, in contrast, cause a systemic and usually fatal disease syndrome characterized either by an exudative serositis or a disseminated granulomatous disease. Although the diseases they cause are quite different, FECVs and FIPVs are antigenically and morphologically indistinguishable from each other. FECVs have a strict tropism for mature intestinal epithelial cells and do not appear to replicate in macrophages. In contrast, FIPVs, appear to spread rapidly from the intestinal mucosa and replicate in macrophages. Experiments will be presented, and literature cited, that will allow us to make the following assumptions about the pathogenesis of FIPV infection: 1) FIPVs and FECVs represent a spectrum of viruses that differ only in infectivity (ability to evoke seroconversion following oral infection) and virulence (ability to cause FIP), 2) field isolates are generally nearer to FECVs in behavior than laboratory isolates made from animal passaged material, 3) immunity to FIPV appears to be of the premunition type and is maintained for as long as the infection persists in a reactivatable form, 4) strains of feline coronaviruses that do not cause systemic disease, such as FECVs or low virulence FIPVs, can actually sensitize cats to infection with virulent FIPV strains, 5) FeLV infection interferes with established FIP immunity and allows for the reactivation of disease in healthy carriers, 6) FIPV may be passaged from queen to kitten either in utero or during neonatal life, and 7) kittens infected by their mothers with FIPV do not usually develop FIP but become immune carriers of the virus for a period of 5-6 months; recovery from the carrier state is associated with a loss of premunition immunity.

UR - http://www.scopus.com/inward/record.url?scp=0023516884&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023516884&partnerID=8YFLogxK

M3 - Review article

C2 - 2829567

AN - SCOPUS:0023516884

VL - 218

SP - 529

EP - 550

JO - Advances in Experimental Medicine and Biology

JF - Advances in Experimental Medicine and Biology

SN - 0065-2598

ER -