TY - JOUR
T1 - Variability in the magnitude of response of metabolic enzymes reveals patterns of co-ordinated expression following endurance training in women
AU - McPhee, J. S.
AU - Williams, A. G.
AU - Perez-Schindler, J.
AU - Degens, H.
AU - Baar, Keith
AU - Jones, D. A.
PY - 2011/7
Y1 - 2011/7
N2 - Skeletal muscles improve their oxidative fatty acid and glucose metabolism following endurance training, but the magnitude of response varies considerably from person to person. In 20 untrained young women we examined interindividual variability in training responses of metabolic enzymes following 6 weeks of endurance training, sufficient to increase maximal oxygen uptake by 10 ± 8% (mean ± SD). Training led to increases in mitochondrial enzymes [succinate dehydrogenase (SDH; 47 ± 78%), cytochrome c oxidase (52 ± 70%) and ATP synthase (63 ± 69%)] and proteins involved in fatty acid metabolism [3-hydroxyacyl CoA dehydrogenase (69 ± 92%) and fatty acid transporter CD36 (86 ± 31%)]. Increases in enzymes of glucose metabolism [phosphofructokinase (29 ± 94%) and glucose transporter 4 (18 ± 65%)] were not significant. There was no relationship between changes in maximal oxygen uptake and the changes in the metabolic proteins. Considerable interindividual variability was seen in the magnitude of responses. The response of each enzyme was proportional to the change in SDH; individuals with a large increase in SDH also showed high gains in all other enzymes, and vice versa. Peroxisome proliferator-activated receptor γ coactivator 1α protein content increased after training, but was not correlated with changes in the metabolic proteins. In conclusion, the results revealed co-ordinated adaptation of several metabolic enzymes following endurance training, despite differences between people in the magnitude of response. Differences between individuals in the magnitude of response might reflect the influence of environmental and genetic factors that govern training adaptations.
AB - Skeletal muscles improve their oxidative fatty acid and glucose metabolism following endurance training, but the magnitude of response varies considerably from person to person. In 20 untrained young women we examined interindividual variability in training responses of metabolic enzymes following 6 weeks of endurance training, sufficient to increase maximal oxygen uptake by 10 ± 8% (mean ± SD). Training led to increases in mitochondrial enzymes [succinate dehydrogenase (SDH; 47 ± 78%), cytochrome c oxidase (52 ± 70%) and ATP synthase (63 ± 69%)] and proteins involved in fatty acid metabolism [3-hydroxyacyl CoA dehydrogenase (69 ± 92%) and fatty acid transporter CD36 (86 ± 31%)]. Increases in enzymes of glucose metabolism [phosphofructokinase (29 ± 94%) and glucose transporter 4 (18 ± 65%)] were not significant. There was no relationship between changes in maximal oxygen uptake and the changes in the metabolic proteins. Considerable interindividual variability was seen in the magnitude of responses. The response of each enzyme was proportional to the change in SDH; individuals with a large increase in SDH also showed high gains in all other enzymes, and vice versa. Peroxisome proliferator-activated receptor γ coactivator 1α protein content increased after training, but was not correlated with changes in the metabolic proteins. In conclusion, the results revealed co-ordinated adaptation of several metabolic enzymes following endurance training, despite differences between people in the magnitude of response. Differences between individuals in the magnitude of response might reflect the influence of environmental and genetic factors that govern training adaptations.
UR - http://www.scopus.com/inward/record.url?scp=79959373789&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959373789&partnerID=8YFLogxK
U2 - 10.1113/expphysiol.2011.057729
DO - 10.1113/expphysiol.2011.057729
M3 - Article
C2 - 21571817
AN - SCOPUS:79959373789
VL - 96
SP - 699
EP - 707
JO - Experimental Physiology
JF - Experimental Physiology
SN - 0958-0670
IS - 7
ER -