Ultra-long magnetic nanochains for highly efficient arsenic removal from water

Gautom Kumar Das, Cecile S. Bonifacio, Julius De Rojas, Kai Liu, Klaus Van Benthem, Ian M. Kennedy

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


The contamination of drinking water with naturally occurring arsenic is a global health threat. Filters that are packed with adsorbent media with a high affinity for arsenic have been used to de-contaminate water - generally iron or aluminium oxides are favored materials. Recently, nanoparticles have been introduced as adsorbent media due to their superior efficiency compared to their bulk counter-parts. An efficient nanoadsorbent should ideally possess high surface area, be easy to synthesize, and most importantly offer a high arsenic removal capacity. Achieving all the key features in a single step synthesis is an engineering challenge. We have successfully engineered such a material in the form of nanochains synthesized via a one step flame synthesis. The ultra-long γ-Fe2O3 nanochains possess high surface area (151.12 m2 g-1), large saturation magnetization (77.1 emu g -1) that aids in their gas phase self-assembly into long chains in an external magnetic field, along with an extraordinary arsenic removal capacity (162 mg g-1). A filter made with this material exhibited a relatively low-pressure drop and very little break-through of the iron oxide across the filter.

Original languageEnglish (US)
Pages (from-to)12974-12981
Number of pages8
JournalJournal of Materials Chemistry A
Issue number32
StatePublished - Aug 28 2014

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)


Dive into the research topics of 'Ultra-long magnetic nanochains for highly efficient arsenic removal from water'. Together they form a unique fingerprint.

Cite this