TY - JOUR
T1 - Tyrosine 70 increases the coenzyme affinity of aspartate aminotransferase. A site-directed mutagenesis study.
AU - Toney, M. D.
AU - Kirsch, J. F.
PY - 1987/9/15
Y1 - 1987/9/15
N2 - The crucial step in enzymatic transamination is the tautomerization of aldimine/ketimine intermediates, formed between the pyridoxyl coenzyme and the amino/keto acid substrate, which is catalyzed primarily by the active site residue Lys-258 (Malcolm, B. A., and Kirsch, J. F. (1985) Biochem. Biophys. Res. Commun. 132, 915-921; W. L. Finlayson and J. F. Kirsch, in preparation). Tyr-70 is localized in close proximity to Lys-258 and, in addition, forms a hydrogen bond with the coenzyme phosphate. Tyr-70 has been postulated to have an important role in the tautomerization (Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., and Christen, P. (1984) J. Mol. Biol. 174, 497-525). This hypothesis has now been tested by the construction and analysis of a mutant Escherichia coli aspartate aminotransferase in which Tyr-70 has been changed to Phe (Y70F). Y70F retains at least 15% of the maximal activity of the wild type enzyme (WT) (kcat = 170 +/- 15 s-1 for WT versus greater than or equal to 26 +/- 3 s-1 for Y70F and shows increased Michaelis constants for both substrates (KmAsp = 2.5 +/- 0.4 mM; Km alpha Kg = 0.59 +/- 0.08 mM for WT versus KmAsp = 3.9 +/- 0.3 mM; Km alpha Kg = 2.70 +/- 0.02 mM for Y70F (where alpha Kg is alpha-ketoglutarate) ). The spectrophotometrically determined pK a values of the internal aldimines formed between pyridoxal 5'-phosphate (PLP) and Lys-258 are identical for WT and Y70F. In assays where excess L-aspartate and excess PLP are incubated with either WT or Y70F, the mutant enzyme converts the free PLP to free pyridoxamine 5'-phosphate 80-fold faster than WT (k = (3.75 +/- 0.23) X 10(-2)s-1 for Y70F versus (4.90 +/- 0.02) X 10(-4)s-1 for WT). Y70F also converts free pyridoxamine 5'-phosphate to free PLP faster than WT. Thus, Y70F dissociates coenzyme more readily than does WT. It therefore appears that the role of Tyr-70 is mainly in preventing the dissociation of the coenzyme from the enzyme. Tyr-70 does not function in an essential chemical step.
AB - The crucial step in enzymatic transamination is the tautomerization of aldimine/ketimine intermediates, formed between the pyridoxyl coenzyme and the amino/keto acid substrate, which is catalyzed primarily by the active site residue Lys-258 (Malcolm, B. A., and Kirsch, J. F. (1985) Biochem. Biophys. Res. Commun. 132, 915-921; W. L. Finlayson and J. F. Kirsch, in preparation). Tyr-70 is localized in close proximity to Lys-258 and, in addition, forms a hydrogen bond with the coenzyme phosphate. Tyr-70 has been postulated to have an important role in the tautomerization (Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., and Christen, P. (1984) J. Mol. Biol. 174, 497-525). This hypothesis has now been tested by the construction and analysis of a mutant Escherichia coli aspartate aminotransferase in which Tyr-70 has been changed to Phe (Y70F). Y70F retains at least 15% of the maximal activity of the wild type enzyme (WT) (kcat = 170 +/- 15 s-1 for WT versus greater than or equal to 26 +/- 3 s-1 for Y70F and shows increased Michaelis constants for both substrates (KmAsp = 2.5 +/- 0.4 mM; Km alpha Kg = 0.59 +/- 0.08 mM for WT versus KmAsp = 3.9 +/- 0.3 mM; Km alpha Kg = 2.70 +/- 0.02 mM for Y70F (where alpha Kg is alpha-ketoglutarate) ). The spectrophotometrically determined pK a values of the internal aldimines formed between pyridoxal 5'-phosphate (PLP) and Lys-258 are identical for WT and Y70F. In assays where excess L-aspartate and excess PLP are incubated with either WT or Y70F, the mutant enzyme converts the free PLP to free pyridoxamine 5'-phosphate 80-fold faster than WT (k = (3.75 +/- 0.23) X 10(-2)s-1 for Y70F versus (4.90 +/- 0.02) X 10(-4)s-1 for WT). Y70F also converts free pyridoxamine 5'-phosphate to free PLP faster than WT. Thus, Y70F dissociates coenzyme more readily than does WT. It therefore appears that the role of Tyr-70 is mainly in preventing the dissociation of the coenzyme from the enzyme. Tyr-70 does not function in an essential chemical step.
UR - http://www.scopus.com/inward/record.url?scp=0023656215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023656215&partnerID=8YFLogxK
M3 - Article
C2 - 3305507
AN - SCOPUS:0023656215
VL - 262
SP - 12403
EP - 12405
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 26
ER -