TY - JOUR
T1 - Tumor necrosis factor-alpha damages tumor blood vessel integrity by targeting VE-cadherin
AU - Menon, Chandrakala
AU - Ghartey, Antoinette
AU - Canter, Robert J
AU - Feldman, Michael
AU - Fraker, Douglas L.
PY - 2006/11
Y1 - 2006/11
N2 - BACKGROUND: Isolated limb perfusion using high-dose human tumor necrosis factor-alpha with melphalan is effective therapy for bulky extremity in-transit melanoma and sarcoma. OBJECTIVE: While it is widely accepted that melphalan is a DNA alkylating agent, the mechanism of selective antitumor effect of tumor necrosis factor-alpha is unclear. METHODS AND RESULTS: Electron microscopic analyses of human melanoma biopsies, pre- and post-melphalan perfusion, showed that the addition of tumor necrosis factor-alpha caused gapping between endothelial cells by 3 to 6 hours post-treatment followed by vascular erythrostasis in treated tumors. In human melanoma xenografts raised in mice, tumor necrosis factor-alpha selectively increased tumor vascular permeability by 3 hours and decreased tumor blood flow by 6 hours post-treatment relative to treated normal tissue. In an in vitro tumor endothelial cell model, tumor necrosis factor-alpha caused vascular endothelial adherens junction protein, VE-cadherin, to relocalize within the cell membrane away from cell-cell junctions leading to gapping between endothelial cells by 3 to 6 hours post-treatment. Phosphotyrosinylation was a prerequisite for movement of VE-cadherin away from endothelial cell junctions and for gapping between endothelial cells. Clinical isolated limb perfusion tumor specimens, at 3 hours postperfusion, showed a discontinuous and irregular pattern of VE-cadherin expression at endothelial cell junctions when compared with normal (skin) or pretreatment tumor tissue. CONCLUSIONS: Together, the data suggest that tumor necrosis factor-alpha selectively damages the integrity of tumor vasculature by disrupting VE-cadherin complexes at vascular endothelial cell junctions leading to gapping between endothelial cells, causing increased vascular leak and erythrostasis in tumors. VE-cadherin appears to be a potentially good target for selective antitumor therapy.
AB - BACKGROUND: Isolated limb perfusion using high-dose human tumor necrosis factor-alpha with melphalan is effective therapy for bulky extremity in-transit melanoma and sarcoma. OBJECTIVE: While it is widely accepted that melphalan is a DNA alkylating agent, the mechanism of selective antitumor effect of tumor necrosis factor-alpha is unclear. METHODS AND RESULTS: Electron microscopic analyses of human melanoma biopsies, pre- and post-melphalan perfusion, showed that the addition of tumor necrosis factor-alpha caused gapping between endothelial cells by 3 to 6 hours post-treatment followed by vascular erythrostasis in treated tumors. In human melanoma xenografts raised in mice, tumor necrosis factor-alpha selectively increased tumor vascular permeability by 3 hours and decreased tumor blood flow by 6 hours post-treatment relative to treated normal tissue. In an in vitro tumor endothelial cell model, tumor necrosis factor-alpha caused vascular endothelial adherens junction protein, VE-cadherin, to relocalize within the cell membrane away from cell-cell junctions leading to gapping between endothelial cells by 3 to 6 hours post-treatment. Phosphotyrosinylation was a prerequisite for movement of VE-cadherin away from endothelial cell junctions and for gapping between endothelial cells. Clinical isolated limb perfusion tumor specimens, at 3 hours postperfusion, showed a discontinuous and irregular pattern of VE-cadherin expression at endothelial cell junctions when compared with normal (skin) or pretreatment tumor tissue. CONCLUSIONS: Together, the data suggest that tumor necrosis factor-alpha selectively damages the integrity of tumor vasculature by disrupting VE-cadherin complexes at vascular endothelial cell junctions leading to gapping between endothelial cells, causing increased vascular leak and erythrostasis in tumors. VE-cadherin appears to be a potentially good target for selective antitumor therapy.
UR - http://www.scopus.com/inward/record.url?scp=33750375857&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750375857&partnerID=8YFLogxK
U2 - 10.1097/01.sla.0000231723.81218.72
DO - 10.1097/01.sla.0000231723.81218.72
M3 - Article
C2 - 17060772
AN - SCOPUS:33750375857
VL - 244
SP - 781
EP - 791
JO - Annals of Surgery
JF - Annals of Surgery
SN - 0003-4932
IS - 5
ER -