TY - JOUR
T1 - Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw
AU - Renkin, E. M.
AU - Watson, P. D.
AU - Sloop, C. H.
AU - Joyner, W. M.
AU - Curry, F. E.
PY - 1977
Y1 - 1977
N2 - Solvent drag coefficients (σf) and permeability surface area products (PS) for six plasma proteins and Dextran 110, determined in the preceding publication, were analyzed according to irreversible thermodynamic and hydrodynamic principles. The relation of σf to molecular size indicates that endothelial pathways admitting these molecules are not the only hydraulically conductive pathways present. At least 81.5% of the volume flow must be assigned to routes essentially impermeable to serum albumin and larger molecules. Presumably, these are the cell membranes and small pore system. The convective pathway for large molecules may represent openings between endothelial cells or fused chains of cytoplasmic vesicles forming transitory channels. Calculated PS values for large molecules in these channels are no larger than one-fourth the measured values. The residual PS must be attributed to nonhydraulically conductive pathways. If these are supposed to be nonfused endothelial vesicles, their turnover rate is estimated to be 0.4 × 10-4 ml/sec per 24-g paw, accounting for three-fourths to five-sixths of the total dissipative solute flux. Due to the composite (parallel pathway) structure of the microvascular endothelium, σf for the whole membrane does not appear to be the same as the osmotic reflection coefficient, (σd), even though the two may be equal for individual membrane pathways (Onsager reciprocity). Over the range of experimental pressures and flows, σf for total plasma proteins is 0.83, while σd is probably 0.89 or higher. The relation between the two σs is sensitive to the microscopic disposition of osmotic and hydrostatic forces in relation to individual transport paths.
AB - Solvent drag coefficients (σf) and permeability surface area products (PS) for six plasma proteins and Dextran 110, determined in the preceding publication, were analyzed according to irreversible thermodynamic and hydrodynamic principles. The relation of σf to molecular size indicates that endothelial pathways admitting these molecules are not the only hydraulically conductive pathways present. At least 81.5% of the volume flow must be assigned to routes essentially impermeable to serum albumin and larger molecules. Presumably, these are the cell membranes and small pore system. The convective pathway for large molecules may represent openings between endothelial cells or fused chains of cytoplasmic vesicles forming transitory channels. Calculated PS values for large molecules in these channels are no larger than one-fourth the measured values. The residual PS must be attributed to nonhydraulically conductive pathways. If these are supposed to be nonfused endothelial vesicles, their turnover rate is estimated to be 0.4 × 10-4 ml/sec per 24-g paw, accounting for three-fourths to five-sixths of the total dissipative solute flux. Due to the composite (parallel pathway) structure of the microvascular endothelium, σf for the whole membrane does not appear to be the same as the osmotic reflection coefficient, (σd), even though the two may be equal for individual membrane pathways (Onsager reciprocity). Over the range of experimental pressures and flows, σf for total plasma proteins is 0.83, while σd is probably 0.89 or higher. The relation between the two σs is sensitive to the microscopic disposition of osmotic and hydrostatic forces in relation to individual transport paths.
UR - http://www.scopus.com/inward/record.url?scp=0017689839&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0017689839&partnerID=8YFLogxK
U2 - 10.1016/0026-2862(77)90019-X
DO - 10.1016/0026-2862(77)90019-X
M3 - Article
C2 - 927218
AN - SCOPUS:0017689839
VL - 14
SP - 205
EP - 214
JO - Microvascular Research
JF - Microvascular Research
SN - 0026-2862
IS - 2
ER -