Transcriptional profiling of a cross-protective Salmonella enterica serovar typhimurium UK-1 dam mutant identifies a set of genes more transcriptionally active compared to wild-type, and stably transcribed across biologically relevant microenvironments

Claire B. Miller, Sebastian Aguilar Pierlé, Kelly A. Brayton, Jennine Ochoa, Devendra H. Shah, Kevin K. Lahmers

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Vaccination with Salmonella enterica serovar Typhimurium lacking DNA adenine methyltransferase confers cross-protective immunity against multiple Salmonella serotypes. The mechanistic basis is thought to be associated with the de-repression of genes that are tightly regulated when transiting from one microenvironment to another. This de-repression provides a potential means for the production of a more highly expressed and stable antigenic repertoire capable of inducing cross-protective immune responses. To identify genes encoding proteins that may contribute to cross-protective immunity, we used a Salmonella Typhimurium DNA adenine methyltransferase mutant strain (UK-1 dam mutant derived from the parental UK-1 strain, and assessed the transcriptional profile of the UK-1 dam mutant and UK-1 strain grown under conditions that simulate the intestinal or endosomal microenvironments encountered during the infective process. As expected, the transcriptional profile of the UK-1 dam mutant identified a set of genes more transcriptionally active when compared directly to UK-1, and stably transcribed in biologically relevant culture conditions. Further, 22% of these genes were more highly transcribed in comparison to two other clinically-relevant Salmonella serovars. The strategy employed here helps to identify potentially conserved proteins produced by the UK-1 dam mutant that stimulate and/or modulate the development of cross-protective immune responses toward multiple Salmonella serotypes.

Original languageEnglish (US)
Pages (from-to)417-436
Number of pages20
JournalPathogens
Volume3
Issue number2
DOIs
StatePublished - May 9 2014
Externally publishedYes

Keywords

  • Bacteriophage
  • DNA adenine methyltransferase
  • Fimbriae
  • Immunity
  • Salmonella typhimurium
  • Transcriptome

ASJC Scopus subject areas

  • Immunology and Allergy
  • Molecular Biology
  • Immunology and Microbiology(all)
  • Microbiology (medical)
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Transcriptional profiling of a cross-protective Salmonella enterica serovar typhimurium UK-1 dam mutant identifies a set of genes more transcriptionally active compared to wild-type, and stably transcribed across biologically relevant microenvironments'. Together they form a unique fingerprint.

  • Cite this