Tracheobronchial epithelium of the sheep: IV. Lectin histochemical characterization of secretory epithelial cells

A. T. Mariassy, Charles Plopper, J. A. St George, Dennis W Wilson

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Conventional histochemical characterization of the mucus secretory apparatus is often difficult to reconcile with the biochemical analysis of respiratory secretions. This study was designed to examine the secretory glycoconjugates in airways using lectins with biochemically defined affinities for main sugar residues of mucus. We used five biotinylated lectins - DBA (Dolichos biflorus) and SBA (Glycine max) for N-acetyl galactosamine (galNAc), BSA I (Bandeiraea simplicifolia) and PNA (Arachis hypogea) for galactose (gal), and UEA I (Ulex europeus) - for detection of fucose (fuc) in HgCl2-fixed, paraffin-embedded, serially sectioned trachea, lobar and segmental bronchi and bronchioles of nine sheep. Lectins selectively localized the carbohydrate residues in luminal secretions, on epithelial cell surfaces, and in secretory cells. In proximal airways, the major carbohydrate residues in luminal secretions, cell surfaces, goblet cells, and glands were fuc and gal-NAc. PNA reacted mainly with apical granules of <10% of goblet cells, and gal residues were only detected in some of the mucous cells and on basolateral cell surfaces. Distal airways contained sparse secretion in the lumen, mucous cells contained weakly reactive fuc and gal-NAc, and the epithelial surfaces of Clara cells contained gal. Sugars abundant in the airway secretions were also the major component of cells in glands. We conclude that there is a correlation between specific sugar residues in secretory cells, glycocalyx, and luminal secretions in proximal and distal airways. This suggests that lectins may be used to obtain information about airway secretory cell composition from respiratory secretions.

Original languageEnglish (US)
Pages (from-to)49-59
Number of pages11
JournalAnatomical Record
Volume222
Issue number1
StatePublished - 1988

Fingerprint

Lectins
secretion
lectins
sheep
Sheep
epithelial cells
epithelium
Epithelium
Epithelial Cells
Galactose
galactose
Fucose
fucose
sugar
cells
mucus
Goblet Cells
Mucus
goblet cells
carbohydrate

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Anatomy

Cite this

Tracheobronchial epithelium of the sheep : IV. Lectin histochemical characterization of secretory epithelial cells. / Mariassy, A. T.; Plopper, Charles; St George, J. A.; Wilson, Dennis W.

In: Anatomical Record, Vol. 222, No. 1, 1988, p. 49-59.

Research output: Contribution to journalArticle

@article{1346bacd455546a09244ffd5dd10c3d2,
title = "Tracheobronchial epithelium of the sheep: IV. Lectin histochemical characterization of secretory epithelial cells",
abstract = "Conventional histochemical characterization of the mucus secretory apparatus is often difficult to reconcile with the biochemical analysis of respiratory secretions. This study was designed to examine the secretory glycoconjugates in airways using lectins with biochemically defined affinities for main sugar residues of mucus. We used five biotinylated lectins - DBA (Dolichos biflorus) and SBA (Glycine max) for N-acetyl galactosamine (galNAc), BSA I (Bandeiraea simplicifolia) and PNA (Arachis hypogea) for galactose (gal), and UEA I (Ulex europeus) - for detection of fucose (fuc) in HgCl2-fixed, paraffin-embedded, serially sectioned trachea, lobar and segmental bronchi and bronchioles of nine sheep. Lectins selectively localized the carbohydrate residues in luminal secretions, on epithelial cell surfaces, and in secretory cells. In proximal airways, the major carbohydrate residues in luminal secretions, cell surfaces, goblet cells, and glands were fuc and gal-NAc. PNA reacted mainly with apical granules of <10{\%} of goblet cells, and gal residues were only detected in some of the mucous cells and on basolateral cell surfaces. Distal airways contained sparse secretion in the lumen, mucous cells contained weakly reactive fuc and gal-NAc, and the epithelial surfaces of Clara cells contained gal. Sugars abundant in the airway secretions were also the major component of cells in glands. We conclude that there is a correlation between specific sugar residues in secretory cells, glycocalyx, and luminal secretions in proximal and distal airways. This suggests that lectins may be used to obtain information about airway secretory cell composition from respiratory secretions.",
author = "Mariassy, {A. T.} and Charles Plopper and {St George}, {J. A.} and Wilson, {Dennis W}",
year = "1988",
language = "English (US)",
volume = "222",
pages = "49--59",
journal = "Anatomical Record",
issn = "1932-8486",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

TY - JOUR

T1 - Tracheobronchial epithelium of the sheep

T2 - IV. Lectin histochemical characterization of secretory epithelial cells

AU - Mariassy, A. T.

AU - Plopper, Charles

AU - St George, J. A.

AU - Wilson, Dennis W

PY - 1988

Y1 - 1988

N2 - Conventional histochemical characterization of the mucus secretory apparatus is often difficult to reconcile with the biochemical analysis of respiratory secretions. This study was designed to examine the secretory glycoconjugates in airways using lectins with biochemically defined affinities for main sugar residues of mucus. We used five biotinylated lectins - DBA (Dolichos biflorus) and SBA (Glycine max) for N-acetyl galactosamine (galNAc), BSA I (Bandeiraea simplicifolia) and PNA (Arachis hypogea) for galactose (gal), and UEA I (Ulex europeus) - for detection of fucose (fuc) in HgCl2-fixed, paraffin-embedded, serially sectioned trachea, lobar and segmental bronchi and bronchioles of nine sheep. Lectins selectively localized the carbohydrate residues in luminal secretions, on epithelial cell surfaces, and in secretory cells. In proximal airways, the major carbohydrate residues in luminal secretions, cell surfaces, goblet cells, and glands were fuc and gal-NAc. PNA reacted mainly with apical granules of <10% of goblet cells, and gal residues were only detected in some of the mucous cells and on basolateral cell surfaces. Distal airways contained sparse secretion in the lumen, mucous cells contained weakly reactive fuc and gal-NAc, and the epithelial surfaces of Clara cells contained gal. Sugars abundant in the airway secretions were also the major component of cells in glands. We conclude that there is a correlation between specific sugar residues in secretory cells, glycocalyx, and luminal secretions in proximal and distal airways. This suggests that lectins may be used to obtain information about airway secretory cell composition from respiratory secretions.

AB - Conventional histochemical characterization of the mucus secretory apparatus is often difficult to reconcile with the biochemical analysis of respiratory secretions. This study was designed to examine the secretory glycoconjugates in airways using lectins with biochemically defined affinities for main sugar residues of mucus. We used five biotinylated lectins - DBA (Dolichos biflorus) and SBA (Glycine max) for N-acetyl galactosamine (galNAc), BSA I (Bandeiraea simplicifolia) and PNA (Arachis hypogea) for galactose (gal), and UEA I (Ulex europeus) - for detection of fucose (fuc) in HgCl2-fixed, paraffin-embedded, serially sectioned trachea, lobar and segmental bronchi and bronchioles of nine sheep. Lectins selectively localized the carbohydrate residues in luminal secretions, on epithelial cell surfaces, and in secretory cells. In proximal airways, the major carbohydrate residues in luminal secretions, cell surfaces, goblet cells, and glands were fuc and gal-NAc. PNA reacted mainly with apical granules of <10% of goblet cells, and gal residues were only detected in some of the mucous cells and on basolateral cell surfaces. Distal airways contained sparse secretion in the lumen, mucous cells contained weakly reactive fuc and gal-NAc, and the epithelial surfaces of Clara cells contained gal. Sugars abundant in the airway secretions were also the major component of cells in glands. We conclude that there is a correlation between specific sugar residues in secretory cells, glycocalyx, and luminal secretions in proximal and distal airways. This suggests that lectins may be used to obtain information about airway secretory cell composition from respiratory secretions.

UR - http://www.scopus.com/inward/record.url?scp=0023806847&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023806847&partnerID=8YFLogxK

M3 - Article

C2 - 3189886

AN - SCOPUS:0023806847

VL - 222

SP - 49

EP - 59

JO - Anatomical Record

JF - Anatomical Record

SN - 1932-8486

IS - 1

ER -