Towards Noninvasive Accurate Detection of Intrapartum Fetal Hypoxic Distress

Begum Kasap, Kourosh Vali, Weitai Qian, Herman L. Hedriana, Aijun Wang, Diana L. Farmer, Soheil Ghiasi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Current intrapartum fetal well-being assessment is performed using electronic fetal monitoring (EFM), technically referred to as cardiotocography (CTG), which transabdominally monitors fetal heart rate (FHR) in relationship to maternal uterine contractions. Sometimes the deceleration in FHR following a uterine contraction can be sign of fetal hypoxic distress, but it may also be a normal physiological response. Multiple studies have shown that EFM has a high false positive rate for detecting fetal hypoxia. This has caused a rise in emergency Cesarean section (C-section) deliveries performed in the US over the years, while the rates of various conditions associated with anoxic brain injury at birth remain unchanged. The underlying problem is that many factors other than hypoxia can cause non-reassuring CTG traces and a more objective measure of oxygen supply to the fetal brain is not conveniently available. We are working to develop a transabdominal fetal pulse oximetry (TFO) system to non-invasively measure fetal arterial blood oxygen saturation (FSpO2) in order to enhance intrapartum fetal monitoring. This paper gives an overview of the past and ongoing work performed to develop TFO, highlights the main engineering and clinical challenges faced and presents preliminary results that demonstrate feasibility of TFO in both pregnant sheep models and human subjects.

Original languageEnglish (US)
Title of host publication2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks, BSN 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665403627
DOIs
StatePublished - Jul 27 2021
Event17th IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks, BSN 2021 - Virtual, Online, Greece
Duration: Jul 27 2021Jul 30 2021

Publication series

Name2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks, BSN 2021

Conference

Conference17th IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks, BSN 2021
Country/TerritoryGreece
CityVirtual, Online
Period7/27/217/30/21

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Towards Noninvasive Accurate Detection of Intrapartum Fetal Hypoxic Distress'. Together they form a unique fingerprint.

Cite this