TY - JOUR
T1 - TNF-α triggers rapid membrane insertion of Ca2+ permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury
AU - Yin, Hong Z.
AU - Hsu, Cheng I.
AU - Yu, Stephen
AU - Rao, Shyam
AU - Sorkin, Linda S.
AU - Weiss, John H.
PY - 2012/12/1
Y1 - 2012/12/1
N2 - Excitotoxicity (caused by over-activation of glutamate receptors) and inflammation both contribute to motor neuron (MN) damage in amyotrophic lateral sclerosis (ALS) and other diseases of the spinal cord. Microglial and astrocytic activation in these conditions results in release of inflammatory mediators, including the cytokine, tumor necrosis factor-alpha (TNF-α). TNF-α has complex effects on neurons, one of which is to trigger rapid membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors, and in some cases, specific insertion of GluA2 lacking, Ca2+ permeable AMPA receptors (Ca-perm AMPAr). In the present study, we use a histochemical stain based upon kainate stimulated uptake of cobalt ions ("Co2+ labeling") to provide the first direct demonstration of the presence of substantial numbers of Ca-perm AMPAr in ventral horn MNs of adult rats under basal conditions. We further find that TNF-α exposure causes a rapid increase in the numbers of these receptors, via a phosphatidylinositol 3 kinase (PI3K) and protein kinase A (PKA) dependent mechanism. Finally, to assess the relevance of TNF-α to slow excitotoxic MN injury, we made use of organotypic spinal cord slice cultures. Co2+ labeling revealed that MNs in these cultures possess Ca-perm AMPAr. Addition of either a low level of TNF-α, or of the glutamate uptake blocker, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to the cultures for 48h resulted in little MN injury. However, when combined, TNF-α+PDC caused considerable MN degeneration, which was blocked by the AMPA/kainate receptor blocker, 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), or the Ca-perm AMPAr selective blocker, 1-naphthyl acetylspermine (NASPM). Thus, these data support the idea that prolonged TNF-α elevation, as may be induced by glial activation, acts in part by increasing the numbers of Ca-perm AMPAr on MNs to enhance injurious excitotoxic effects of deficient astrocytic glutamate transport.
AB - Excitotoxicity (caused by over-activation of glutamate receptors) and inflammation both contribute to motor neuron (MN) damage in amyotrophic lateral sclerosis (ALS) and other diseases of the spinal cord. Microglial and astrocytic activation in these conditions results in release of inflammatory mediators, including the cytokine, tumor necrosis factor-alpha (TNF-α). TNF-α has complex effects on neurons, one of which is to trigger rapid membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors, and in some cases, specific insertion of GluA2 lacking, Ca2+ permeable AMPA receptors (Ca-perm AMPAr). In the present study, we use a histochemical stain based upon kainate stimulated uptake of cobalt ions ("Co2+ labeling") to provide the first direct demonstration of the presence of substantial numbers of Ca-perm AMPAr in ventral horn MNs of adult rats under basal conditions. We further find that TNF-α exposure causes a rapid increase in the numbers of these receptors, via a phosphatidylinositol 3 kinase (PI3K) and protein kinase A (PKA) dependent mechanism. Finally, to assess the relevance of TNF-α to slow excitotoxic MN injury, we made use of organotypic spinal cord slice cultures. Co2+ labeling revealed that MNs in these cultures possess Ca-perm AMPAr. Addition of either a low level of TNF-α, or of the glutamate uptake blocker, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to the cultures for 48h resulted in little MN injury. However, when combined, TNF-α+PDC caused considerable MN degeneration, which was blocked by the AMPA/kainate receptor blocker, 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), or the Ca-perm AMPAr selective blocker, 1-naphthyl acetylspermine (NASPM). Thus, these data support the idea that prolonged TNF-α elevation, as may be induced by glial activation, acts in part by increasing the numbers of Ca-perm AMPAr on MNs to enhance injurious excitotoxic effects of deficient astrocytic glutamate transport.
KW - ALS
KW - AMPA
KW - Amyotrophic lateral sclerosis
KW - Ca permeable AMPA receptors
KW - Motor neuron
KW - Phosphatidylinositol 3 kinase
KW - Protein kinase A
KW - Slice culture
KW - Tumor necrosis factor-alpha
UR - http://www.scopus.com/inward/record.url?scp=84866495012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866495012&partnerID=8YFLogxK
U2 - 10.1016/j.expneurol.2012.08.004
DO - 10.1016/j.expneurol.2012.08.004
M3 - Article
C2 - 22921461
AN - SCOPUS:84866495012
VL - 238
SP - 93
EP - 102
JO - Experimental Neurology
JF - Experimental Neurology
SN - 0014-4886
IS - 2
ER -