TY - JOUR
T1 - Tissue-Specific RNA Expression Marks Distant-Acting Developmental Enhancers
AU - Wu, Han
AU - Nord, Alexander
AU - Akiyama, Jennifer A.
AU - Shoukry, Malak
AU - Afzal, Veena
AU - Rubin, Edward M.
AU - Pennacchio, Len A.
AU - Visel, Axel
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs) within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs) displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.
AB - Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs) within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs) displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.
UR - http://www.scopus.com/inward/record.url?scp=84907437678&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907437678&partnerID=8YFLogxK
U2 - 10.1371/journal.pgen.1004610
DO - 10.1371/journal.pgen.1004610
M3 - Article
C2 - 25188404
AN - SCOPUS:84907437678
VL - 10
JO - PLoS Genetics
JF - PLoS Genetics
SN - 1553-7390
IS - 9
ER -