Time course of ozone-induced changes in breathing pattern in healthy exercising humans

Edward S Schelegle, William F. Walby, William C. Adams

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

We examined the time course of O3-induced changes in breathing pattern in 97 healthy human subjects (70 men and 27 women). One- to five-minute averages of breathing frequency (fB) and minute ventilation (V̇E) were used to generate plots of cumulative breaths and cumulative exposure volume vs. time and cumulative exposure volume vs. cumulative breaths. Analysis revealed a three-phase response; delay, no response detected; onset, fB began to increase; response, fB stabilized. Regression analysis was used to identify four parameters: time to onset, number of breaths at onset, cumulative inhaled dose of ozone at onset of O3-induced tachypnea, and the percent change in fB. The effect of altering O3 concentration, V̇E, atropine treatment, and indomethacin treatment were examined. We found that the lower the O3 concentration, the greater the number of breaths at onset of tachypnea at a fixed ventilation, whereas number of breaths at onset of tachypnea remains unchanged when V̇E is altered and O3 concentration is fixed. The cumulative inhaled dose of O3 at onset of tachypnea remained constant and showed no relationship with the magnitude of percent change in fB. Atropine did not affect any of the derived parameters, whereas indomethacin did not affect time to onset, number of breaths at onset, or cumulative inhaled dose of O3 at onset of tachypnea but did attenuate percent change in fB. The results are discussed in the context of dose response and intrinsic mechanisms of action.

Original languageEnglish (US)
Pages (from-to)688-697
Number of pages10
JournalJournal of Applied Physiology
Volume102
Issue number2
DOIs
StatePublished - Feb 2007

Keywords

  • Breathing pattern
  • Kinetics
  • Oxidants
  • Ozone
  • Tachypnea

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint Dive into the research topics of 'Time course of ozone-induced changes in breathing pattern in healthy exercising humans'. Together they form a unique fingerprint.

  • Cite this