Theoretical study of inhibition of adenosine deaminase by (8R)-coformycin and (8R)-deoxycoformycin

Tami J. Marrone, T. P. Straatsma, James M. Briggs, David K. Wilson, Florante A. Quiocho, J. Andrew McCammon

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Molecular dynamics and free energy simulations were performed to examine the binding of (8R)-deoxycoformycin and (8R)-coformycin to adenosine deaminase. The two inhibitors differ only at the 2' position of the sugar ring; the sugar moiety of conformycin is ribose, while it is deoxyribose for deoxycoformycin. The 100 ps molecular dynamics trajectories reveal that Asp 19 and His 17 interact strongly with the 5' hydroxyl group of the sugar moiety of both inhibitors and appear to play an important role in binding the sugar. The 2' and 3' groups of the sugars are near the protein-water interface and can be stabilized by either protein residues or water. The flexibility of the residues at the opening of the active site helps to explain the modest difference in binding of the two inhibitors and how substrates/inhibitors can enter an otherwise inaccessible binding site.

Original languageEnglish (US)
Pages (from-to)277-284
Number of pages8
JournalJournal of Medicinal Chemistry
Issue number1
StatePublished - Jan 5 1996
Externally publishedYes

ASJC Scopus subject areas

  • Organic Chemistry


Dive into the research topics of 'Theoretical study of inhibition of adenosine deaminase by (8R)-coformycin and (8R)-deoxycoformycin'. Together they form a unique fingerprint.

Cite this