TY - JOUR
T1 - The use of transient chromatin immunoprecipitation assays to test models for E2F1-specific transcriptional activation
AU - Lavrrar, Jennifer L.
AU - Farnham, Peggy J.
PY - 2004/10/29
Y1 - 2004/10/29
N2 - The E2F family of transcription factors regulates the expression of genes involved in cell cycle progression, DNA synthesis, repair, and recombination, and a variety of other cellular processes. Although E2F proteins are often redundant in function, specificity of binding and activity can occur. For example, E2F1, but not other E2F family members, was shown previously to bind the murine carboxylesterase promoter in chromatin immunoprecipitation studies (Wells, J., Graveel, C. R., Bartley, S. M., Madore, S. J., and Farnham, P. J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 3890-3895). This promoter region lacks a consensus E2F binding site, suggesting that E2F1 may be recruited to the DNA in a unique fashion. To further investigate this E2F1-specific binding, we have employed a "transient chromatin immunoprecipitation" approach. Using various deletions and mutations of the promoter region, we localized the E2F1-specific binding site and demonstrated that it was required for E2F1-mediated transcription of the carboxylesterase promoter. The identified site was similar to the 8-bp consensus E2F site but differed from the consensus at a crucial position. To address whether E2F1 directly bound to this non-consensus site, we demonstrated that the DNA binding domain of E2F1 is necessary for E2F1-mediated activation of the carboxylesterase promoter. Interestingly, a "UP" mutation of the site, making it more similar to the consensus element, did not improve the ability of E2F1 to bind the promoter. Rather, E2F1 could no longer bind to the carboxylesterase promoter that contained the consensus E2F site. We propose a model in which E2F1-specific regulation of the carboxylesterase promoter requires both E2F1/DNA interactions and protein-protein interaction between E2F1 and a factor that binds adjacent to the non-consensus site.
AB - The E2F family of transcription factors regulates the expression of genes involved in cell cycle progression, DNA synthesis, repair, and recombination, and a variety of other cellular processes. Although E2F proteins are often redundant in function, specificity of binding and activity can occur. For example, E2F1, but not other E2F family members, was shown previously to bind the murine carboxylesterase promoter in chromatin immunoprecipitation studies (Wells, J., Graveel, C. R., Bartley, S. M., Madore, S. J., and Farnham, P. J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 3890-3895). This promoter region lacks a consensus E2F binding site, suggesting that E2F1 may be recruited to the DNA in a unique fashion. To further investigate this E2F1-specific binding, we have employed a "transient chromatin immunoprecipitation" approach. Using various deletions and mutations of the promoter region, we localized the E2F1-specific binding site and demonstrated that it was required for E2F1-mediated transcription of the carboxylesterase promoter. The identified site was similar to the 8-bp consensus E2F site but differed from the consensus at a crucial position. To address whether E2F1 directly bound to this non-consensus site, we demonstrated that the DNA binding domain of E2F1 is necessary for E2F1-mediated activation of the carboxylesterase promoter. Interestingly, a "UP" mutation of the site, making it more similar to the consensus element, did not improve the ability of E2F1 to bind the promoter. Rather, E2F1 could no longer bind to the carboxylesterase promoter that contained the consensus E2F site. We propose a model in which E2F1-specific regulation of the carboxylesterase promoter requires both E2F1/DNA interactions and protein-protein interaction between E2F1 and a factor that binds adjacent to the non-consensus site.
UR - http://www.scopus.com/inward/record.url?scp=7744238149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=7744238149&partnerID=8YFLogxK
U2 - 10.1074/jbc.M402692200
DO - 10.1074/jbc.M402692200
M3 - Article
C2 - 15328355
AN - SCOPUS:7744238149
VL - 279
SP - 46343
EP - 46349
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 44
ER -