TY - JOUR
T1 - The use of antimicrobial peptides in ophthalmology
T2 - An experimental study in corneal preservation and the management of bacterial keratitis
AU - Mannis, Mark J.
PY - 2002
Y1 - 2002
N2 - Purpose: Bacterial keratitis is an ocular infection with the potential to cause significant visual impairment. Increasing patterns of antibiotic resistance have necessitated the development of new antimicrobial agents for use in bacterial keratitis and other serious ocular infections. With a view to exploring the use of novel antimicrobial peptides in the management of ocular infection, we performed a series of experiments using synthetic antimicrobial peptides designed for the eradication of common and serious ophthalmic pathogens. Methods: Experiments were performed with three clinical ocular isolates - Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis - in three experimental settings: (1) in vitro in a controlled system of 10 mM sodium phosphate buffer, (2) in vitro in modified chondroitin sulfate-based corneal preservation media (Optisol), and (3) in an in vivo animal model (rabbit) simulating bacterial keratitis. In all cases, outcomes were measured by quantitative microbiological techniques. Results: The candidate peptides (CCI A, B, and C and COL-1) produced a total reduction of the test pathogens in phosphate buffered saline. In modified Optisol, the peptides were effective against S epidermidis at all temperatures, demonstrated augmented activity at 23°C against the gram-positive organisms, but were ineffective against P aeruginosa. The addition of EDTA to the medium augmented the killing of P aeruginosa but made no difference in the reduction of gram-positive organisms. In an in vivo rabbit model of Pseudomonas keratitis, COL-1 demonstrated neither clinical nor microbicidal efficacy and appeared to have a very narrow dosage range, outside of which it appeared to be toxic to the ocular surface. Conclusions: Our data indicate that the antimicrobial peptides we tested were effective in vitro but not in vivo. In an age of increasing antibiotic resistance, antimicrobial peptides, developed over millions of years as innate defense mechanisms by plants and animals, may have significant potential for development as topical agents for the management of severe bacterial keratitis. However, modifications of the peptides, the drug delivery systems, or both, will be necessary for effective clinical application.
AB - Purpose: Bacterial keratitis is an ocular infection with the potential to cause significant visual impairment. Increasing patterns of antibiotic resistance have necessitated the development of new antimicrobial agents for use in bacterial keratitis and other serious ocular infections. With a view to exploring the use of novel antimicrobial peptides in the management of ocular infection, we performed a series of experiments using synthetic antimicrobial peptides designed for the eradication of common and serious ophthalmic pathogens. Methods: Experiments were performed with three clinical ocular isolates - Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis - in three experimental settings: (1) in vitro in a controlled system of 10 mM sodium phosphate buffer, (2) in vitro in modified chondroitin sulfate-based corneal preservation media (Optisol), and (3) in an in vivo animal model (rabbit) simulating bacterial keratitis. In all cases, outcomes were measured by quantitative microbiological techniques. Results: The candidate peptides (CCI A, B, and C and COL-1) produced a total reduction of the test pathogens in phosphate buffered saline. In modified Optisol, the peptides were effective against S epidermidis at all temperatures, demonstrated augmented activity at 23°C against the gram-positive organisms, but were ineffective against P aeruginosa. The addition of EDTA to the medium augmented the killing of P aeruginosa but made no difference in the reduction of gram-positive organisms. In an in vivo rabbit model of Pseudomonas keratitis, COL-1 demonstrated neither clinical nor microbicidal efficacy and appeared to have a very narrow dosage range, outside of which it appeared to be toxic to the ocular surface. Conclusions: Our data indicate that the antimicrobial peptides we tested were effective in vitro but not in vivo. In an age of increasing antibiotic resistance, antimicrobial peptides, developed over millions of years as innate defense mechanisms by plants and animals, may have significant potential for development as topical agents for the management of severe bacterial keratitis. However, modifications of the peptides, the drug delivery systems, or both, will be necessary for effective clinical application.
UR - http://www.scopus.com/inward/record.url?scp=0036981523&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036981523&partnerID=8YFLogxK
M3 - Article
C2 - 12545697
AN - SCOPUS:0036981523
VL - 100
SP - 243
EP - 271
JO - Transactions of the American Ophthalmological Society
JF - Transactions of the American Ophthalmological Society
SN - 0065-9533
ER -