The unique NH2-terminally deleted (ΔN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the ΔN variant of p63

E. Scott Helton, Jianhui Zhu, Xinbin Chen

Research output: Contribution to journalArticle

78 Citations (Scopus)

Abstract

p63, a member of the p53 family of transcription factors, is known to be involved in epithelial development. However, its role in tumorigenesis is unclear. Contributing to this uncertainty, the TP63 locus can express multiple gene products from two different promoters. Utilization of the upstream promoter results in expression of the TAp63 variant with an activation domain similar to p53. In contrast, the NH2-terminally deleted (ΔN) p63 variant, transcribed from a cryptic promoter in intron 3, lacks such an activation domain. Thus, the TAp63 and ΔNp63 variants possess a wide ranging ability to up-regulate p53 target genes. Consequentially, the disparity in transactivation potential between p63 variants has given rise to the hypothesis that the ΔNp63 variant can serve as oncoprotein by opposing the activity of the TAp63 variant and p53. However, recent studies have revealed a transcriptional activity for ΔNp63. This study was undertaken to address the transcriptional activity of the ΔNp63 variant. Here, we showed that all NH2-terminally deleted p63 isoforms retain a potential in transactivation and growth suppression. Interestingly, ΔNp63β possesses a remarkable ability to suppress cell proliferation and transactivate target genes, which is consistently higher than that seen with ΔNp63α. In contrast, ΔNp63γ has a weak or undetectable activity dependent upon the cell lines used. We also demonstrate that an intact DNA-binding domain is required for ΔNp63 function. In addition, we found that the novel activation domain for the ΔNp63 variant is composed of the 14 unique ΔN residues along with the adjacent region, including a PXXP motif. Finally, we demonstrated that a PPXY motif shared by ΔNp63α and ΔNp63β is required for optimal transactivation of target gene promoters, suggesting that the PPXY motif is requisite for ΔNp63 function.

Original languageEnglish (US)
Pages (from-to)2533-2542
Number of pages10
JournalJournal of Biological Chemistry
Volume281
Issue number5
DOIs
StatePublished - Feb 3 2006
Externally publishedYes

Fingerprint

Transcriptional Activation
Aptitude
Genes
Chemical activation
Oncogene Proteins
p53 Genes
Introns
Uncertainty
Protein Isoforms
Cell proliferation
Carcinogenesis
Transcription Factors
Up-Regulation
Cell Proliferation
Cell Line
DNA
Cells
Growth

ASJC Scopus subject areas

  • Biochemistry

Cite this

The unique NH2-terminally deleted (ΔN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the ΔN variant of p63. / Helton, E. Scott; Zhu, Jianhui; Chen, Xinbin.

In: Journal of Biological Chemistry, Vol. 281, No. 5, 03.02.2006, p. 2533-2542.

Research output: Contribution to journalArticle

@article{30730c1d96bb43cb953f992a3d63c231,
title = "The unique NH2-terminally deleted (ΔN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the ΔN variant of p63",
abstract = "p63, a member of the p53 family of transcription factors, is known to be involved in epithelial development. However, its role in tumorigenesis is unclear. Contributing to this uncertainty, the TP63 locus can express multiple gene products from two different promoters. Utilization of the upstream promoter results in expression of the TAp63 variant with an activation domain similar to p53. In contrast, the NH2-terminally deleted (ΔN) p63 variant, transcribed from a cryptic promoter in intron 3, lacks such an activation domain. Thus, the TAp63 and ΔNp63 variants possess a wide ranging ability to up-regulate p53 target genes. Consequentially, the disparity in transactivation potential between p63 variants has given rise to the hypothesis that the ΔNp63 variant can serve as oncoprotein by opposing the activity of the TAp63 variant and p53. However, recent studies have revealed a transcriptional activity for ΔNp63. This study was undertaken to address the transcriptional activity of the ΔNp63 variant. Here, we showed that all NH2-terminally deleted p63 isoforms retain a potential in transactivation and growth suppression. Interestingly, ΔNp63β possesses a remarkable ability to suppress cell proliferation and transactivate target genes, which is consistently higher than that seen with ΔNp63α. In contrast, ΔNp63γ has a weak or undetectable activity dependent upon the cell lines used. We also demonstrate that an intact DNA-binding domain is required for ΔNp63 function. In addition, we found that the novel activation domain for the ΔNp63 variant is composed of the 14 unique ΔN residues along with the adjacent region, including a PXXP motif. Finally, we demonstrated that a PPXY motif shared by ΔNp63α and ΔNp63β is required for optimal transactivation of target gene promoters, suggesting that the PPXY motif is requisite for ΔNp63 function.",
author = "Helton, {E. Scott} and Jianhui Zhu and Xinbin Chen",
year = "2006",
month = "2",
day = "3",
doi = "10.1074/jbc.M507964200",
language = "English (US)",
volume = "281",
pages = "2533--2542",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "5",

}

TY - JOUR

T1 - The unique NH2-terminally deleted (ΔN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the ΔN variant of p63

AU - Helton, E. Scott

AU - Zhu, Jianhui

AU - Chen, Xinbin

PY - 2006/2/3

Y1 - 2006/2/3

N2 - p63, a member of the p53 family of transcription factors, is known to be involved in epithelial development. However, its role in tumorigenesis is unclear. Contributing to this uncertainty, the TP63 locus can express multiple gene products from two different promoters. Utilization of the upstream promoter results in expression of the TAp63 variant with an activation domain similar to p53. In contrast, the NH2-terminally deleted (ΔN) p63 variant, transcribed from a cryptic promoter in intron 3, lacks such an activation domain. Thus, the TAp63 and ΔNp63 variants possess a wide ranging ability to up-regulate p53 target genes. Consequentially, the disparity in transactivation potential between p63 variants has given rise to the hypothesis that the ΔNp63 variant can serve as oncoprotein by opposing the activity of the TAp63 variant and p53. However, recent studies have revealed a transcriptional activity for ΔNp63. This study was undertaken to address the transcriptional activity of the ΔNp63 variant. Here, we showed that all NH2-terminally deleted p63 isoforms retain a potential in transactivation and growth suppression. Interestingly, ΔNp63β possesses a remarkable ability to suppress cell proliferation and transactivate target genes, which is consistently higher than that seen with ΔNp63α. In contrast, ΔNp63γ has a weak or undetectable activity dependent upon the cell lines used. We also demonstrate that an intact DNA-binding domain is required for ΔNp63 function. In addition, we found that the novel activation domain for the ΔNp63 variant is composed of the 14 unique ΔN residues along with the adjacent region, including a PXXP motif. Finally, we demonstrated that a PPXY motif shared by ΔNp63α and ΔNp63β is required for optimal transactivation of target gene promoters, suggesting that the PPXY motif is requisite for ΔNp63 function.

AB - p63, a member of the p53 family of transcription factors, is known to be involved in epithelial development. However, its role in tumorigenesis is unclear. Contributing to this uncertainty, the TP63 locus can express multiple gene products from two different promoters. Utilization of the upstream promoter results in expression of the TAp63 variant with an activation domain similar to p53. In contrast, the NH2-terminally deleted (ΔN) p63 variant, transcribed from a cryptic promoter in intron 3, lacks such an activation domain. Thus, the TAp63 and ΔNp63 variants possess a wide ranging ability to up-regulate p53 target genes. Consequentially, the disparity in transactivation potential between p63 variants has given rise to the hypothesis that the ΔNp63 variant can serve as oncoprotein by opposing the activity of the TAp63 variant and p53. However, recent studies have revealed a transcriptional activity for ΔNp63. This study was undertaken to address the transcriptional activity of the ΔNp63 variant. Here, we showed that all NH2-terminally deleted p63 isoforms retain a potential in transactivation and growth suppression. Interestingly, ΔNp63β possesses a remarkable ability to suppress cell proliferation and transactivate target genes, which is consistently higher than that seen with ΔNp63α. In contrast, ΔNp63γ has a weak or undetectable activity dependent upon the cell lines used. We also demonstrate that an intact DNA-binding domain is required for ΔNp63 function. In addition, we found that the novel activation domain for the ΔNp63 variant is composed of the 14 unique ΔN residues along with the adjacent region, including a PXXP motif. Finally, we demonstrated that a PPXY motif shared by ΔNp63α and ΔNp63β is required for optimal transactivation of target gene promoters, suggesting that the PPXY motif is requisite for ΔNp63 function.

UR - http://www.scopus.com/inward/record.url?scp=33646365381&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646365381&partnerID=8YFLogxK

U2 - 10.1074/jbc.M507964200

DO - 10.1074/jbc.M507964200

M3 - Article

C2 - 16319057

AN - SCOPUS:33646365381

VL - 281

SP - 2533

EP - 2542

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 5

ER -