The highest affinity DNA element bound by Pbx complexes in t(1;19) leukemic cells fails to mediate cooperative DNA-binding or cooperative transactivation by E2a-Pbx1 and Class I Hox proteins - Evidence for selective targetting of E2a-Pbx1 to a subset of Pbx-recognition elements

Paul S Knoepfler, Mark P. Kamps

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Oncoprotein E2a-Pbx1 contains the N-terminal transactivation domains of E2a and the majority of the homeodomain protein, Pbx1. Using recombinant proteins, both Pbx1 and E2a-Pbx1 heterodimerize with Hox proteins on bipartite elements, Pbx1 binding a 5' TGAT core and Class I Hox proteins binding adjacent 3' TAAT, TTAT, or TGAT cores. In contrast to these in vitro results, nuclear extracts from E2a-Pbx1-transformed cells assemble an abundant Pbx-containing complex on TGATTGAT that excludes E2a-Pbx1, suggesting that an uncharacterized in vivo partner discriminates between E2a-Pbx1 and Pbx proteins, distinguishing it from Hox proteins. Here, we describe the DNA-binding properties of this complex, and identify TGATTGAC (PCE; Pbx Consensus Element) as its optimal recognition motif. In vitro, the PCE fails to bind heterodimers of Class I Hox proteins plus either Pbx1 or E2a-Pbx1. Likewise, in vivo, the PCE fails to mediate cooperative transactivation by E2a-Pbx1 plus Class I Hox proteins. Thus, the PCE binds a Pbx dimer partner that behaves unlike Class I Hox proteins. Competition analysis indicates that the Pbx-containing complex that binds the PCE also binds the TGATTGAT Pbx-Hox element and binds promoter elements required for tissue-specific expression of a number of cellular genes. Thus, different Pbx partners dictate targetting of Pbx heterodimers to related DNA motifs that differ in the sequence of their 3' half-sites, and E2a-Pbx1 heterodimerizes with only a subset of Pbx partners, restricting its potential DNA targets.

Original languageEnglish (US)
Pages (from-to)2521-2531
Number of pages11
JournalOncogene
Volume14
Issue number21
DOIs
StatePublished - 1997

Fingerprint

Transcriptional Activation
DNA
Proteins
Homeodomain Proteins
Nucleotide Motifs
Oncogene Proteins
Recombinant Proteins
Protein Binding
Genes
In Vitro Techniques

Keywords

  • E2a-Pbx1
  • Hox
  • Pbx
  • T(1;19) pre-B ALL

ASJC Scopus subject areas

  • Molecular Biology
  • Cancer Research
  • Genetics

Cite this

@article{e2a265f679be42f8b8a4ab2c96f79a8c,
title = "The highest affinity DNA element bound by Pbx complexes in t(1;19) leukemic cells fails to mediate cooperative DNA-binding or cooperative transactivation by E2a-Pbx1 and Class I Hox proteins - Evidence for selective targetting of E2a-Pbx1 to a subset of Pbx-recognition elements",
abstract = "Oncoprotein E2a-Pbx1 contains the N-terminal transactivation domains of E2a and the majority of the homeodomain protein, Pbx1. Using recombinant proteins, both Pbx1 and E2a-Pbx1 heterodimerize with Hox proteins on bipartite elements, Pbx1 binding a 5' TGAT core and Class I Hox proteins binding adjacent 3' TAAT, TTAT, or TGAT cores. In contrast to these in vitro results, nuclear extracts from E2a-Pbx1-transformed cells assemble an abundant Pbx-containing complex on TGATTGAT that excludes E2a-Pbx1, suggesting that an uncharacterized in vivo partner discriminates between E2a-Pbx1 and Pbx proteins, distinguishing it from Hox proteins. Here, we describe the DNA-binding properties of this complex, and identify TGATTGAC (PCE; Pbx Consensus Element) as its optimal recognition motif. In vitro, the PCE fails to bind heterodimers of Class I Hox proteins plus either Pbx1 or E2a-Pbx1. Likewise, in vivo, the PCE fails to mediate cooperative transactivation by E2a-Pbx1 plus Class I Hox proteins. Thus, the PCE binds a Pbx dimer partner that behaves unlike Class I Hox proteins. Competition analysis indicates that the Pbx-containing complex that binds the PCE also binds the TGATTGAT Pbx-Hox element and binds promoter elements required for tissue-specific expression of a number of cellular genes. Thus, different Pbx partners dictate targetting of Pbx heterodimers to related DNA motifs that differ in the sequence of their 3' half-sites, and E2a-Pbx1 heterodimerizes with only a subset of Pbx partners, restricting its potential DNA targets.",
keywords = "E2a-Pbx1, Hox, Pbx, T(1;19) pre-B ALL",
author = "Knoepfler, {Paul S} and Kamps, {Mark P.}",
year = "1997",
doi = "10.1038/sj.onc.1201097",
language = "English (US)",
volume = "14",
pages = "2521--2531",
journal = "Oncogene",
issn = "0950-9232",
publisher = "Nature Publishing Group",
number = "21",

}

TY - JOUR

T1 - The highest affinity DNA element bound by Pbx complexes in t(1;19) leukemic cells fails to mediate cooperative DNA-binding or cooperative transactivation by E2a-Pbx1 and Class I Hox proteins - Evidence for selective targetting of E2a-Pbx1 to a subset of Pbx-recognition elements

AU - Knoepfler, Paul S

AU - Kamps, Mark P.

PY - 1997

Y1 - 1997

N2 - Oncoprotein E2a-Pbx1 contains the N-terminal transactivation domains of E2a and the majority of the homeodomain protein, Pbx1. Using recombinant proteins, both Pbx1 and E2a-Pbx1 heterodimerize with Hox proteins on bipartite elements, Pbx1 binding a 5' TGAT core and Class I Hox proteins binding adjacent 3' TAAT, TTAT, or TGAT cores. In contrast to these in vitro results, nuclear extracts from E2a-Pbx1-transformed cells assemble an abundant Pbx-containing complex on TGATTGAT that excludes E2a-Pbx1, suggesting that an uncharacterized in vivo partner discriminates between E2a-Pbx1 and Pbx proteins, distinguishing it from Hox proteins. Here, we describe the DNA-binding properties of this complex, and identify TGATTGAC (PCE; Pbx Consensus Element) as its optimal recognition motif. In vitro, the PCE fails to bind heterodimers of Class I Hox proteins plus either Pbx1 or E2a-Pbx1. Likewise, in vivo, the PCE fails to mediate cooperative transactivation by E2a-Pbx1 plus Class I Hox proteins. Thus, the PCE binds a Pbx dimer partner that behaves unlike Class I Hox proteins. Competition analysis indicates that the Pbx-containing complex that binds the PCE also binds the TGATTGAT Pbx-Hox element and binds promoter elements required for tissue-specific expression of a number of cellular genes. Thus, different Pbx partners dictate targetting of Pbx heterodimers to related DNA motifs that differ in the sequence of their 3' half-sites, and E2a-Pbx1 heterodimerizes with only a subset of Pbx partners, restricting its potential DNA targets.

AB - Oncoprotein E2a-Pbx1 contains the N-terminal transactivation domains of E2a and the majority of the homeodomain protein, Pbx1. Using recombinant proteins, both Pbx1 and E2a-Pbx1 heterodimerize with Hox proteins on bipartite elements, Pbx1 binding a 5' TGAT core and Class I Hox proteins binding adjacent 3' TAAT, TTAT, or TGAT cores. In contrast to these in vitro results, nuclear extracts from E2a-Pbx1-transformed cells assemble an abundant Pbx-containing complex on TGATTGAT that excludes E2a-Pbx1, suggesting that an uncharacterized in vivo partner discriminates between E2a-Pbx1 and Pbx proteins, distinguishing it from Hox proteins. Here, we describe the DNA-binding properties of this complex, and identify TGATTGAC (PCE; Pbx Consensus Element) as its optimal recognition motif. In vitro, the PCE fails to bind heterodimers of Class I Hox proteins plus either Pbx1 or E2a-Pbx1. Likewise, in vivo, the PCE fails to mediate cooperative transactivation by E2a-Pbx1 plus Class I Hox proteins. Thus, the PCE binds a Pbx dimer partner that behaves unlike Class I Hox proteins. Competition analysis indicates that the Pbx-containing complex that binds the PCE also binds the TGATTGAT Pbx-Hox element and binds promoter elements required for tissue-specific expression of a number of cellular genes. Thus, different Pbx partners dictate targetting of Pbx heterodimers to related DNA motifs that differ in the sequence of their 3' half-sites, and E2a-Pbx1 heterodimerizes with only a subset of Pbx partners, restricting its potential DNA targets.

KW - E2a-Pbx1

KW - Hox

KW - Pbx

KW - T(1;19) pre-B ALL

UR - http://www.scopus.com/inward/record.url?scp=0030991337&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030991337&partnerID=8YFLogxK

U2 - 10.1038/sj.onc.1201097

DO - 10.1038/sj.onc.1201097

M3 - Article

C2 - 9191052

AN - SCOPUS:0030991337

VL - 14

SP - 2521

EP - 2531

JO - Oncogene

JF - Oncogene

SN - 0950-9232

IS - 21

ER -