TY - JOUR
T1 - The comparative histologic effects of subthreshold 532- and 810-nm diode micropulse laser on the retina
AU - Yu, Alfred K.
AU - Merrill, Kevin D.
AU - Truong, Steven N.
AU - Forward, Krisztina M.
AU - Morse, Lawrence S
AU - Telander, David G.
PY - 2013
Y1 - 2013
N2 - PURPOSE. Therapeutic retinal laser photocoagulation can damage the neurosensory retina and cause iatrogenic visual impairment. Subthreshold micropulse photocoagulation may decrease this risk by selective tissue treatment. The aim of this study was to compare subthreshold 810-nm diode micropulse laser and subthreshold 532-nm micropulse laser on the retina by histologic examination and differential protein expression. METHODS. Fourteen Dutch-belted rabbits received subthreshold 810-nm diode micropulse laser photocoagulation in their right eye and subthreshold 532-nm micropulse laser photocoagulation in their left eye. Histology and immunohistochemical detection of stromal cell-derived factor-1 (SDF-1), β-actin, vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), and insulin-like growth factor 1 (IGF-1) were analyzed 12 hours, 3 days, 14 days, and 28 days post-laser photocoagulation. RESULTS. Histologically, all time points produced a similar degree of retinal disruption in both wavelengths. Immunohistochemically, SDF-1 expression was greatest at the 12-hour time point and decreased thereafter. SDF-1, VEGF, and β-actin up-regulation was detected at early time points in both the 810- and 532-nm micropulse laser-treated animals. CONCLUSIONS. Subthreshold micropulse retinal laser photocoagulation caused equivalent histologic changes from both 532- and 810-nm diode lasers. Differential protein expression was not evident between the different laser conditions.
AB - PURPOSE. Therapeutic retinal laser photocoagulation can damage the neurosensory retina and cause iatrogenic visual impairment. Subthreshold micropulse photocoagulation may decrease this risk by selective tissue treatment. The aim of this study was to compare subthreshold 810-nm diode micropulse laser and subthreshold 532-nm micropulse laser on the retina by histologic examination and differential protein expression. METHODS. Fourteen Dutch-belted rabbits received subthreshold 810-nm diode micropulse laser photocoagulation in their right eye and subthreshold 532-nm micropulse laser photocoagulation in their left eye. Histology and immunohistochemical detection of stromal cell-derived factor-1 (SDF-1), β-actin, vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), and insulin-like growth factor 1 (IGF-1) were analyzed 12 hours, 3 days, 14 days, and 28 days post-laser photocoagulation. RESULTS. Histologically, all time points produced a similar degree of retinal disruption in both wavelengths. Immunohistochemically, SDF-1 expression was greatest at the 12-hour time point and decreased thereafter. SDF-1, VEGF, and β-actin up-regulation was detected at early time points in both the 810- and 532-nm micropulse laser-treated animals. CONCLUSIONS. Subthreshold micropulse retinal laser photocoagulation caused equivalent histologic changes from both 532- and 810-nm diode lasers. Differential protein expression was not evident between the different laser conditions.
UR - http://www.scopus.com/inward/record.url?scp=84875654050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875654050&partnerID=8YFLogxK
U2 - 10.1167/iovs.12-11382
DO - 10.1167/iovs.12-11382
M3 - Article
C2 - 23439599
AN - SCOPUS:84875654050
VL - 54
SP - 2216
EP - 2224
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
SN - 0146-0404
IS - 3
ER -