Abstract
Recently Beh and Farver investigated and evaluated three non-iterative procedures for estimating the linear-by-linear parameter of an ordinal log-linear model. The study demonstrated that these non-iterative techniques provide estimates that are, for most types of contingency tables, statistically indistinguishable from estimates from Newton's unidimensional algorithm. Here we show how two of these techniques are related using the Box-Cox transformation. We also show that by using this transformation, accurate non-iterative estimates are achievable even when a contingency table contains sampling zeros.
Original language | English (US) |
---|---|
Pages (from-to) | 475-484 |
Number of pages | 10 |
Journal | Australian and New Zealand Journal of Statistics |
Volume | 54 |
Issue number | 4 |
DOIs | |
State | Published - Dec 2012 |
Keywords
- Box-Cox transformation
- Linear-by-linear association
- Newton's unidimensional method
- Ordinal log-linear model
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty