Tension in the culture dish: microfilament organization and migratory behavior of quail neural crest cells.

Richard P Tucker, B. F. Edwards, C. A. Erickson

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

We have investigated one aspect of the migratory behavior of quail neural crest (NC) cells by comparing the organization of microfilament bundles and the ability to distort migratory substrata by NC, somite, and notochord cells in vitro. In contrast to the numerous cytoplasmic stress fibers in somite-derived fibroblasts and notochord cells revealed by rhodamine-phalloidin staining and thin-section electron microscopy, microfilaments in NC cells are restricted to the cell cortex. To test the relative degrees of tension generated by these cell types on the underlying substratum, cells were cultured in collagen gels and on distortable silicone rubber sheets. Explanted somites and notochords produced dramatic radial alignment of 750 micrograms/ml collagen gels, whereas neural crest cells only aligned gels of lower concentrations. Fibroblasts did not migrate individually from explanted somites and notochords into 250 micrograms/ml collagen gels as readily as into higher concentration collagen lattices. In contrast, neural crest cells migrated into matrices of low concentration as well as into higher concentration collagen gels. Neural crest cells and their pigmented derivatives did not distort silicone rubber sheets, whereas somite and notochord-derived fibroblasts wrinkle this substratum after 4 days in culture. Thus, the differences in organization of the actin cytoskeleton reflect the tractional force exerted by these cells on their substratum. We hypothesize that the migratory behavior of NC cells in vivo may be related to their ability to translocate through embryonic extracellular matrices while generating relatively weak adhesions with the substratum, whereas the stronger forces generated by other embryonic cell types upon the delicate extracellular matrix may restrict their migration and may be associated with other morphogenetic events.

Original languageEnglish (US)
Pages (from-to)225-237
Number of pages13
JournalCell Motility
Volume5
Issue number3
StatePublished - 1985

Fingerprint

Quail
Neural Crest
Actin Cytoskeleton
Notochord
Somites
Collagen
Gels
Silicone Elastomers
Aptitude
Fibroblasts
Extracellular Matrix
Stress Fibers
Cultured Cells
Electron Microscopy
Staining and Labeling

ASJC Scopus subject areas

  • Cell Biology

Cite this

Tension in the culture dish : microfilament organization and migratory behavior of quail neural crest cells. / Tucker, Richard P; Edwards, B. F.; Erickson, C. A.

In: Cell Motility, Vol. 5, No. 3, 1985, p. 225-237.

Research output: Contribution to journalArticle

@article{9859c41ec1b6485abe6571b34ce766d9,
title = "Tension in the culture dish: microfilament organization and migratory behavior of quail neural crest cells.",
abstract = "We have investigated one aspect of the migratory behavior of quail neural crest (NC) cells by comparing the organization of microfilament bundles and the ability to distort migratory substrata by NC, somite, and notochord cells in vitro. In contrast to the numerous cytoplasmic stress fibers in somite-derived fibroblasts and notochord cells revealed by rhodamine-phalloidin staining and thin-section electron microscopy, microfilaments in NC cells are restricted to the cell cortex. To test the relative degrees of tension generated by these cell types on the underlying substratum, cells were cultured in collagen gels and on distortable silicone rubber sheets. Explanted somites and notochords produced dramatic radial alignment of 750 micrograms/ml collagen gels, whereas neural crest cells only aligned gels of lower concentrations. Fibroblasts did not migrate individually from explanted somites and notochords into 250 micrograms/ml collagen gels as readily as into higher concentration collagen lattices. In contrast, neural crest cells migrated into matrices of low concentration as well as into higher concentration collagen gels. Neural crest cells and their pigmented derivatives did not distort silicone rubber sheets, whereas somite and notochord-derived fibroblasts wrinkle this substratum after 4 days in culture. Thus, the differences in organization of the actin cytoskeleton reflect the tractional force exerted by these cells on their substratum. We hypothesize that the migratory behavior of NC cells in vivo may be related to their ability to translocate through embryonic extracellular matrices while generating relatively weak adhesions with the substratum, whereas the stronger forces generated by other embryonic cell types upon the delicate extracellular matrix may restrict their migration and may be associated with other morphogenetic events.",
author = "Tucker, {Richard P} and Edwards, {B. F.} and Erickson, {C. A.}",
year = "1985",
language = "English (US)",
volume = "5",
pages = "225--237",
journal = "Cytoskeleton",
issn = "1949-3584",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - Tension in the culture dish

T2 - microfilament organization and migratory behavior of quail neural crest cells.

AU - Tucker, Richard P

AU - Edwards, B. F.

AU - Erickson, C. A.

PY - 1985

Y1 - 1985

N2 - We have investigated one aspect of the migratory behavior of quail neural crest (NC) cells by comparing the organization of microfilament bundles and the ability to distort migratory substrata by NC, somite, and notochord cells in vitro. In contrast to the numerous cytoplasmic stress fibers in somite-derived fibroblasts and notochord cells revealed by rhodamine-phalloidin staining and thin-section electron microscopy, microfilaments in NC cells are restricted to the cell cortex. To test the relative degrees of tension generated by these cell types on the underlying substratum, cells were cultured in collagen gels and on distortable silicone rubber sheets. Explanted somites and notochords produced dramatic radial alignment of 750 micrograms/ml collagen gels, whereas neural crest cells only aligned gels of lower concentrations. Fibroblasts did not migrate individually from explanted somites and notochords into 250 micrograms/ml collagen gels as readily as into higher concentration collagen lattices. In contrast, neural crest cells migrated into matrices of low concentration as well as into higher concentration collagen gels. Neural crest cells and their pigmented derivatives did not distort silicone rubber sheets, whereas somite and notochord-derived fibroblasts wrinkle this substratum after 4 days in culture. Thus, the differences in organization of the actin cytoskeleton reflect the tractional force exerted by these cells on their substratum. We hypothesize that the migratory behavior of NC cells in vivo may be related to their ability to translocate through embryonic extracellular matrices while generating relatively weak adhesions with the substratum, whereas the stronger forces generated by other embryonic cell types upon the delicate extracellular matrix may restrict their migration and may be associated with other morphogenetic events.

AB - We have investigated one aspect of the migratory behavior of quail neural crest (NC) cells by comparing the organization of microfilament bundles and the ability to distort migratory substrata by NC, somite, and notochord cells in vitro. In contrast to the numerous cytoplasmic stress fibers in somite-derived fibroblasts and notochord cells revealed by rhodamine-phalloidin staining and thin-section electron microscopy, microfilaments in NC cells are restricted to the cell cortex. To test the relative degrees of tension generated by these cell types on the underlying substratum, cells were cultured in collagen gels and on distortable silicone rubber sheets. Explanted somites and notochords produced dramatic radial alignment of 750 micrograms/ml collagen gels, whereas neural crest cells only aligned gels of lower concentrations. Fibroblasts did not migrate individually from explanted somites and notochords into 250 micrograms/ml collagen gels as readily as into higher concentration collagen lattices. In contrast, neural crest cells migrated into matrices of low concentration as well as into higher concentration collagen gels. Neural crest cells and their pigmented derivatives did not distort silicone rubber sheets, whereas somite and notochord-derived fibroblasts wrinkle this substratum after 4 days in culture. Thus, the differences in organization of the actin cytoskeleton reflect the tractional force exerted by these cells on their substratum. We hypothesize that the migratory behavior of NC cells in vivo may be related to their ability to translocate through embryonic extracellular matrices while generating relatively weak adhesions with the substratum, whereas the stronger forces generated by other embryonic cell types upon the delicate extracellular matrix may restrict their migration and may be associated with other morphogenetic events.

UR - http://www.scopus.com/inward/record.url?scp=0021903473&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021903473&partnerID=8YFLogxK

M3 - Article

C2 - 3891092

AN - SCOPUS:0021903473

VL - 5

SP - 225

EP - 237

JO - Cytoskeleton

JF - Cytoskeleton

SN - 1949-3584

IS - 3

ER -