TY - JOUR
T1 - Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters
AU - Horwitz, Barbara A
AU - Chau, Sat M.
AU - Hamilton, Jock S.
AU - Song, Christine
AU - Gorgone, Julia
AU - Saenz, Marissa
AU - Horowitz, John M.
AU - Chen, Chao-Yin
PY - 2013/10/1
Y1 - 2013/10/1
N2 - Hibernating mammals undergo torpor during which blood pressure (BP), heart rate (HR), metabolic rate, and core temperature (TC) dramatically decrease, conserving energy. While the cardiovascular system remains functional, temporal changes in BP, HR, and baroreceptor-HR reflex sensitivity (BRS) over complete hibernation bouts and their relation to TC are unknown. We implanted BP/temperature telemetry transmitters into Syrian hamsters to test three hypotheses: H-1) BP, HR, and BRS decrease concurrently during entry into hibernation and increase concurrently during arousal; H-2) these changes occur before changes in TC; and H-3) the pattern of changes is consistent over successive bouts. We found: 1) upon hibernation entry, BP and HR declined before TC and BRS, suggesting baroreflex control of HR continues to regulate BP as the BP set point decreases; 2) during the later phase of entry, BRS decreased rapidly whereas BP and TC fell gradually, suggesting the importance of TC in further BP declines; 3) during torpor, BP slowly increased (but remained relatively low) without changes in HR or BRS or increased TC, suggesting minimal baroreflex or temperature influence; 4) during arousal, increased TC and BRS significantly lagged increases in BP and HR, consistent with establishment of tissue perfusion before increased TC/metabolism; and 5) the temporal pattern of these changes was similar over successive bouts in all hamsters. These results negate H-1, support H-2 with respect to BP and HR, support H-3, and indicate that the baroreflex contributes to cardiovascular regulation over a hibernation bout, albeit operating in a fundamentally different manner during entry vs. arousal.
AB - Hibernating mammals undergo torpor during which blood pressure (BP), heart rate (HR), metabolic rate, and core temperature (TC) dramatically decrease, conserving energy. While the cardiovascular system remains functional, temporal changes in BP, HR, and baroreceptor-HR reflex sensitivity (BRS) over complete hibernation bouts and their relation to TC are unknown. We implanted BP/temperature telemetry transmitters into Syrian hamsters to test three hypotheses: H-1) BP, HR, and BRS decrease concurrently during entry into hibernation and increase concurrently during arousal; H-2) these changes occur before changes in TC; and H-3) the pattern of changes is consistent over successive bouts. We found: 1) upon hibernation entry, BP and HR declined before TC and BRS, suggesting baroreflex control of HR continues to regulate BP as the BP set point decreases; 2) during the later phase of entry, BRS decreased rapidly whereas BP and TC fell gradually, suggesting the importance of TC in further BP declines; 3) during torpor, BP slowly increased (but remained relatively low) without changes in HR or BRS or increased TC, suggesting minimal baroreflex or temperature influence; 4) during arousal, increased TC and BRS significantly lagged increases in BP and HR, consistent with establishment of tissue perfusion before increased TC/metabolism; and 5) the temporal pattern of these changes was similar over successive bouts in all hamsters. These results negate H-1, support H-2 with respect to BP and HR, support H-3, and indicate that the baroreflex contributes to cardiovascular regulation over a hibernation bout, albeit operating in a fundamentally different manner during entry vs. arousal.
KW - Arrhythmia
KW - Cold
KW - Hemodynamics
KW - Torpor
UR - http://www.scopus.com/inward/record.url?scp=84884924843&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884924843&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00450.2012
DO - 10.1152/ajpregu.00450.2012
M3 - Article
C2 - 23904107
AN - SCOPUS:84884924843
VL - 305
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
SN - 1931-857X
IS - 7
ER -