Abstract
Little is known about the mechanisms that regulate species-specific telomere length, particularly in mammalian species. The genetic regulation of telomere length was therefore investigated by using two inter-fertile species of mice, which differ in their telomere length. Mus musculus (telomere length > 25 kb) and Mus spretus (telomere length 5-15 kb) were used to generate F1 crosses and reciprocal backcrosses, which were then analyzed for regulation of telomere length. This analysis indicated that a dominant and trans-acting mechanism exists capable of extensive elongation of telomeres in somatic cells after fusion of parental germline cells with discrepant telomere lengths. A genome wide screen of interspecific crosses, using M. spretus as the recurrent parent, identified a 5-centimorgan region on distal chromosome 2 that predominantly controls the observed species-specific telomere length regulation. This locus is distinct from candidate genes encoding known telomere-binding proteins or telomerase components. These results demonstrate that an unidentified gene(s) mapped to distal chromosome 2 regulates telomere length in the mouse.
Original language | English (US) |
---|---|
Pages (from-to) | 8648-8653 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 95 |
Issue number | 15 |
DOIs | |
State | Published - Jul 21 1998 |
ASJC Scopus subject areas
- Genetics
- General