TY - JOUR
T1 - Synaptic Output of Individual Layer 4 Neurons in Guinea Pig Visual Cortex
AU - Sáez, Ignacio
AU - Friedlander, Michael J.
PY - 2009/4/15
Y1 - 2009/4/15
N2 - More than 90% of geniculocortical axons from the dorsal lateral geniculate nucleus of the thalamus innervate layer 4 (L4) of V1 (primary visual cortex). Excitatory neurons, which comprise >80% of the neuronal population in L4, synapse mainly onto adjacent L4 neurons and layer 2/3 (L2/3) neurons. It has been suggested that intralaminar L4-L4 connections contribute to amplifying and refining thalamocor-tical signals before routing to L2/3. To unambiguously probe the properties of the synaptic outputs from these L4 excitatory neurons, we used multiple simultaneous whole-cell patch-clamp recording and stimulation from two to four neighboring L4 neurons. We recorded uEPSCs (evoked unitary synaptic currents) in response to pairs of action potentials elicited in single presynaptic L4 neurons for 102 L4 cell pairs and found that their properties are more diverse than previously described. Averaged unitary synaptic response peak amplitudes spanned almost three orders of magnitude, from 0.42 to 192.92 pA. Although connections were, on average, reliable (average failure rate, 25%), we recorded a previously unknown subset of unreliable (failure rates from 30 to 100%) and weak (averaged response amplitudes, < 5 pA) connections. Reliable connections with high probability of neurotransmitter release responded to paired presynaptic pulses with depression, whereas unreliable connections underwent paired-pulse facilitation. Recordings from interconnected sets of L4 triplets revealed that synaptic response amplitudes and reliability were equally variable between independent cell pairs and those that shared a common presynaptic or postsynaptic cell, suggesting local perisynaptic influences on the development and/or state of synaptic function.
AB - More than 90% of geniculocortical axons from the dorsal lateral geniculate nucleus of the thalamus innervate layer 4 (L4) of V1 (primary visual cortex). Excitatory neurons, which comprise >80% of the neuronal population in L4, synapse mainly onto adjacent L4 neurons and layer 2/3 (L2/3) neurons. It has been suggested that intralaminar L4-L4 connections contribute to amplifying and refining thalamocor-tical signals before routing to L2/3. To unambiguously probe the properties of the synaptic outputs from these L4 excitatory neurons, we used multiple simultaneous whole-cell patch-clamp recording and stimulation from two to four neighboring L4 neurons. We recorded uEPSCs (evoked unitary synaptic currents) in response to pairs of action potentials elicited in single presynaptic L4 neurons for 102 L4 cell pairs and found that their properties are more diverse than previously described. Averaged unitary synaptic response peak amplitudes spanned almost three orders of magnitude, from 0.42 to 192.92 pA. Although connections were, on average, reliable (average failure rate, 25%), we recorded a previously unknown subset of unreliable (failure rates from 30 to 100%) and weak (averaged response amplitudes, < 5 pA) connections. Reliable connections with high probability of neurotransmitter release responded to paired presynaptic pulses with depression, whereas unreliable connections underwent paired-pulse facilitation. Recordings from interconnected sets of L4 triplets revealed that synaptic response amplitudes and reliability were equally variable between independent cell pairs and those that shared a common presynaptic or postsynaptic cell, suggesting local perisynaptic influences on the development and/or state of synaptic function.
UR - http://www.scopus.com/inward/record.url?scp=65549087184&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65549087184&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.0046-09.2009
DO - 10.1523/JNEUROSCI.0046-09.2009
M3 - Article
C2 - 19369562
AN - SCOPUS:65549087184
VL - 29
SP - 4930
EP - 4944
JO - Journal of Neuroscience
JF - Journal of Neuroscience
SN - 0270-6474
IS - 15
ER -