1H NMR characterization of metastable and equilibrium heme orientational heterogeneity in reconstituted and native human hemoglobin

Gerd N. La Mar, Yasuhiko Yamamoto, Thomas Jue, Kevin M. Smith, Ravindra K. Pandey

Research output: Contribution to journalArticle

70 Scopus citations

Abstract

A proton nuclear magnetic resonance study of the reaction of apohemoglobin A with both oxidized and reduced hemes reveals that at least two slowly interconverting species are initially formed, only one of which corresponds to the native proteins. Reconstitutions with isotope-labeled hemes reveal that the hyperfine-shift patterns for heme resonances in the metazido derivatives differ for the two species by interchange of heme environment characteristic of heme orientational disorder about the α,γ-meso axis, as previously demonstrated for myoglobin [La Mar, G. N., Davis, N. L., Parish, D. W., & Smith, K. M. (1983) J. Mol. Biol. 168, 887-896]. Careful scrutiny of the 1H NMR spectrum of freshly prepared hemoglobin A (Hb A) reveals that characteristic resonances for the alternate heme orientation are present in both subunits, clearly demonstrating that "native" Hb A possesses an important structure heterogeneity. It is observed that this heterogeneity disappears with time for one subunit but remains unchanged in the other. This implies that a metastable disordered state in vivo involves the α subunit and an equilibrium disordered state both in vivo and in vitro is involved within the β subunit. The presence of metastable disorder in fresh blood suggests an in vivo hemoglobin assembly from apoprotein and heme that is similar to the in vitro reconstitution process. The slow equilibration and known lifetimes for erythrocytes provide a rationalization for the presence of detectable metastable states. The implications of such heme disorder for Hb function are discussed.

Original languageEnglish (US)
Pages (from-to)3826-3831
Number of pages6
JournalBiochemistry
Volume24
Issue number15
StatePublished - 1985

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of '<sup>1</sup>H NMR characterization of metastable and equilibrium heme orientational heterogeneity in reconstituted and native human hemoglobin'. Together they form a unique fingerprint.

  • Cite this