Subcellular [Ca2+](i) gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes

Peter S. Haddock, William A. Coetzee, Emily Cho, Lisa Porter, Hideki Katoh, Donald M Bers, M. Saleet Jafri, Michael Artman

Research output: Contribution to journalArticle

139 Scopus citations

Abstract

The central role of T-tubule and sarcoplasmic reticulum (SR) diadic junctions in excitation-contraction (EC) coupling in adult (AD) ventricular myocytes suggests that their absence in newborn (NB) cells may manifest as an altered EC coupling phenotype. We used confocal microscopy to compare fluo-3 [Ca2+](i) transients in the subsarcolemmal space and cell center of field- stimulated NB and AD rabbit ventricular myocytes. Peak systolic [Ca2+](i) occurred sooner and was higher in the subsarcolemmal space compared with the cell center in NB myocytes. In AD myocytes, [Ca2+](i) rose and declined with similar profiles at the cell center and subsarcolemmal space. Disabling the SR (10 μmol/L thapsigargin) slowed the rate of rise and decline of Ca2+ in AD myocytes but did not alter Ca2+ transient kinetics in NB myocytes. In contrast to adults, localized SR Ca2+ release events ('Ca2+ sparks') occurred predominantly at the cell periphery of NB myocytes. Immunolabeling experiments demonstrated overlapping distributions of the Na+-Ca2+ exchanger and ryanodine receptors (RyR2) in AD myocytes. In contrast, RyR2s were spatially separated from the sarcolemma in NB myocytes. Confocal sarcolemmal imaging of di-8-ANEPPS-treated myocytes confirmed an extensive T-tubule network in AD cells, and that T-tubules are absent in NB myocytes. A mathematical model of subcellular Ca2+ dynamics predicts that Ca2+ flux via the Na+-Ca2+ exchanger during an action potential can account for the subsarcolemmal Ca2+ gradients in NB myocytes. Spatial separation of sarcolemmal Ca2+ entry from SR Ca2+ release channels may minimize the role of SR Ca2+ release during normal EC coupling in NB ventricular myocytes.

Original languageEnglish (US)
Pages (from-to)415-427
Number of pages13
JournalCirculation Research
Volume85
Issue number5
StatePublished - Sep 3 1999
Externally publishedYes

Keywords

  • Ca
  • Development
  • Excitation-contraction coupling
  • Modeling
  • T-tubule

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Fingerprint Dive into the research topics of 'Subcellular [Ca<sup>2+</sup>](i) gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes'. Together they form a unique fingerprint.

Cite this