Structure-based discovery of the endocrine disrupting effects of hydraulic fracturing chemicals as novel androgen receptor antagonists

Phum Tachachartvanich, Ettayapuram Ramaprasad Azhagiya Singam, Kathleen A. Durkin, Martyn T. Smith, Michele A. La Merrill

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Hydraulic fracturing (HF) technology is increasingly utilized for oil and gas extraction operations. The widespread use of HF has led to concerns of negative impacts on both the environment and human health. Indeed, the potential endocrine disrupting impacts of HF chemicals is one such knowledge gap. Herein, we used structure-based molecular docking to assess the binding affinities of 60 HF chemicals to the human androgen receptor (AR). Five HF chemicals had relatively high predicted AR binding affinity, suggesting the potential for endocrine disruption. We next assessed androgenic and antiandrogenic activities of these chemicals in vitro. Of the five candidate AR ligands, only Genapol®X–100 significantly modified AR transactivation. To better understand the structural effect of Genapol®X–100 on the potency of AR inhibition, we compared the antiandrogenic activity of Genapol®X–100 with that of its structurally similar chemical, Genapol®X–080. Interestingly, both Genapol®X–100 and Genapol®X–080 elicited an antagonistic effect at AR with 20% relative inhibitory concentrations of 0.43 and 0.89 μM, respectively. Furthermore, we investigated the mechanism of AR inhibition of these two chemicals in vitro, and found that both Genapol®X–100 and Genapol®X–080 inhibited AR through a noncompetitive mechanism. The effect of these two chemicals on the expression of AR responsive genes, e.g. PSA, KLK2, and AR, was also investigated. Genapol®X–100 and Genapol®X–080 altered the expression of these genes. Our findings heighten awareness of endocrine disruption by HF chemicals and provide evidence that noncompetitive antiandrogenic Genapol®X–100 could cause adverse endocrine health effects.

Original languageEnglish (US)
Article number127178
StatePublished - Oct 2020


  • Androgen receptor
  • Antiandrogens
  • Endocrine disruptors
  • Fracking
  • Molecular docking

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Chemistry(all)
  • Pollution
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Structure-based discovery of the endocrine disrupting effects of hydraulic fracturing chemicals as novel androgen receptor antagonists'. Together they form a unique fingerprint.

Cite this