Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The most common CF-causing mutation, ΔF508-CFTR, produces CFTR loss-of-function by impairing its cellular targeting to the plasma membrane and its chloride channel gating. We recently identified cyanoquinolines with both corrector ("Co", normalizing ΔF508-CFTR targeting) and potentiator ("Po", normalizing ΔF508-CFTR channel gating) activities. Here, we synthesized and characterized 24 targeted cyanoquinoline analogues to elucidate the conformational requirements for corrector and potentiator activities. Compounds with potentiator-only, corrector-only, and dual potentiator-corrector activities were found. Molecular modeling studies (conformational search - force-field lowest energy assessment - geometry optimization) suggest that (1) a flexible tether and (2) a relatively short bridge between the cyanoquinoline and arylamide moieties are important cyanoquinoline-based CoPo features. Further, these CoPo's may adopt two distinct π-stacking conformations to elicit corrector and potentiator activities.
Original language | English (US) |
---|---|
Pages (from-to) | 1242-1251 |
Number of pages | 10 |
Journal | Journal of Medicinal Chemistry |
Volume | 55 |
Issue number | 3 |
DOIs | |
State | Published - Feb 9 2012 |
ASJC Scopus subject areas
- Molecular Medicine
- Drug Discovery