TY - JOUR
T1 - Stalking the fourth domain in metagenomic data
T2 - Searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees
AU - Wu, Dongying
AU - Wu, Martin
AU - Halpern, Aaron
AU - Rusch, Douglas B.
AU - Yooseph, Shibu
AU - Frazier, Marvin
AU - Venter, J. Craig
AU - Eisen, Jonathan A
PY - 2011
Y1 - 2011
N2 - Background: Most of our knowledge about the ancient evolutionary history of organisms has been derived from data associated with specific known organisms (i.e., organisms that we can study directly such as plants, metazoans, and culturable microbes). Recently, however, a new source of data for such studies has arrived: DNA sequence data generated directly from environmental samples. Such metagenomic data has enormous potential in a variety of areas including, as we argue here, in studies of very early events in the evolution of gene families and of species. Methodology/Principal Findings: We designed and implemented new methods for analyzing metagenomic data and used them to search the Global Ocean Sampling (GOS) Expedition data set for novel lineages in three gene families commonly used in phylogenetic studies of known and unknown organisms: small subunit rRNA and the recA and rpoB superfamilies. Though the methods available could not accurately identify very deeply branched ss-rRNAs (largely due to difficulties in making robust sequence alignments for novel rRNA fragments), our analysis revealed the existence of multiple novel branches in the recA and rpoB gene families. Analysis of available sequence data likely from the same genomes as these novel recA and rpoB homologs was then used to further characterize the possible organismal source of the novel sequences. Conclusions/Significance: Of the novel recA and rpoB homologs identified in the metagenomic data, some likely come from uncharacterized viruses while others may represent ancient paralogs not yet seen in any cultured organism. A third possibility is that some come from novel cellular lineages that are only distantly related to any organisms for which sequence data is currently available. If there exist any major, but so-far-undiscovered, deeply branching lineages in the tree of life, we suggest that methods such as those described herein currently offer the best way to search for them.
AB - Background: Most of our knowledge about the ancient evolutionary history of organisms has been derived from data associated with specific known organisms (i.e., organisms that we can study directly such as plants, metazoans, and culturable microbes). Recently, however, a new source of data for such studies has arrived: DNA sequence data generated directly from environmental samples. Such metagenomic data has enormous potential in a variety of areas including, as we argue here, in studies of very early events in the evolution of gene families and of species. Methodology/Principal Findings: We designed and implemented new methods for analyzing metagenomic data and used them to search the Global Ocean Sampling (GOS) Expedition data set for novel lineages in three gene families commonly used in phylogenetic studies of known and unknown organisms: small subunit rRNA and the recA and rpoB superfamilies. Though the methods available could not accurately identify very deeply branched ss-rRNAs (largely due to difficulties in making robust sequence alignments for novel rRNA fragments), our analysis revealed the existence of multiple novel branches in the recA and rpoB gene families. Analysis of available sequence data likely from the same genomes as these novel recA and rpoB homologs was then used to further characterize the possible organismal source of the novel sequences. Conclusions/Significance: Of the novel recA and rpoB homologs identified in the metagenomic data, some likely come from uncharacterized viruses while others may represent ancient paralogs not yet seen in any cultured organism. A third possibility is that some come from novel cellular lineages that are only distantly related to any organisms for which sequence data is currently available. If there exist any major, but so-far-undiscovered, deeply branching lineages in the tree of life, we suggest that methods such as those described herein currently offer the best way to search for them.
UR - http://www.scopus.com/inward/record.url?scp=79952806659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952806659&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0018011
DO - 10.1371/journal.pone.0018011
M3 - Article
C2 - 21437252
AN - SCOPUS:79952806659
VL - 6
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 3
M1 - e18011
ER -