Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition

Marianna Shnayderman, Brian Mansfield, Ping Yip, Heather A. Clark, Melissa D. Krebs, Sarah J. Cohen, Julie E. Zeskind, Edward T. Ryan, Henry L. Dorkin, Michael V. Callahan, Thomas O. Stair, Jeffrey A. Gelfand, Christopher J. Gill, Ben Hitt, Cristina E Davis

Research output: Contribution to journalArticlepeer-review

70 Scopus citations


As bacteria grow and proliferate, they release a variety of volatile compounds that can be profiled and used for speciation, providing an approach amenable to disease diagnosis through quick analysis of clinical cultures as well as patient breath analysis. As a practical alternative to mass spectrometry detection and whole cell pyrolysis approaches, we have developed methodology that involves detection via a sensitive, micromachined differential mobility spectrometer (microDMx), for sampling headspace gases produced by bacteria growing in liquid culture. We have applied pattern discovery/recognition algorithms (ProteomeQuest) to analyze headspace gas spectra generated by microDMx to reliably discern multiple species of bacteria in vitro: Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and Mycobacterium smegmatis. The overall accuracy for identifying volatile profiles of a species within the 95% confidence interval for the two highest accuracy models evolved was between 70.4 and 89.3% based upon the coordinated expression of between 5 and 11 features. These encouraging in vitro results suggest that the microDMx technology, coupled with bioinformatics data analysis, has potential for diagnosis of bacterial infections.

Original languageEnglish (US)
Pages (from-to)5930-5937
Number of pages8
JournalAnalytical Chemistry
Issue number18
StatePublished - Sep 15 2005
Externally publishedYes

ASJC Scopus subject areas

  • Analytical Chemistry


Dive into the research topics of 'Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition'. Together they form a unique fingerprint.

Cite this