Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain

Esther Shin Patchin, Donald S. Anderson, Rona M. Silva, Dale L. Uyeminami, Grace M. Scott, Ting Guo, Laura S. Van Winkle, Kent E Pinkerton

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Background: Silver nanoparticles (AgNP) are present in personal, commercial, and industrial products, which are often aerosolized. Current understanding of the deposition, translocation, and health-related impacts of AgNP inhalation is limited. oBjectives: We determined a) the deposition and retention of inhaled Ag in the nasal cavity from nose-only exposure; b) the timing for Ag translocation to and retention/clearance in the olfactory bulb (OB); and c) whether the presence of Ag in the OB affects microglial activity. Methods: Male Sprague-Dawley rats were exposed nose-only to citrate-buffered 20-or 110-nm AgNP (C20 or C110, respectively) or citrate buffer alone for 6 hr. The nasal cavity and OB were examined for the presence of Ag and for biological responses up to 56 days post-exposure (8 weeks). results: The highest nasal Ag deposition was observed on Day 0 for both AgNP sizes. Inhalation of aerosolized C20 resulted in rapid translocation of Ag to the OB and in microglial activation at Days 0, 1, and 7. In contrast, inhalation of C110 resulted in a gradual but progressive transport of Ag to and retention in the OB, with a trend for microglial activation to variably be above control. conclusions: The results of this study show that after rats experienced a 6-hr inhalation exposure to 20-and 110-nm AgNP at a single point in time, Ag deposition in the nose, the rate of translocation to the brain, and subsequent microglial activation in the OB differed depending on AgNP size and time since exposure.

Original languageEnglish (US)
Pages (from-to)1870-1875
Number of pages6
JournalEnvironmental Health Perspectives
Issue number12
StatePublished - Dec 1 2016

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain'. Together they form a unique fingerprint.

Cite this