Abstract
Trans-acting factors involved in the early meiotic recombination pathway play a major role in promoting homolog pairing during meiosis in many plants, fungi, and mammals. Here we address whether or not allelic sites have higher levels of interaction when in cis to meiotic recombination events in the budding yeast Saccharomyces cerevisiae. We used Cre/loxP site-specific recombination to genetically measure the magnitude of physical interaction between loxP sites located at allelic positions on homologous chromosomes during meiosis. We observed nonrandom coincidence of Cre-mediated loxP recombination events and meiotic recombination events when the two occurred at linked positions. Further experiments showed that a subset of recombination events destined to become crossover products increased the frequency of nearby Cre-mediated loxP recombination. Our results support a simple physical model of homolog pairing in budding yeast, where recombination at numerous genomic positions generally serves to loosely coalign homologous chromosomes, while crossover-bound recombination intermediates locally stabilize interactions between allelic sites.
Original language | English (US) |
---|---|
Pages (from-to) | 773-784 |
Number of pages | 12 |
Journal | Genetics |
Volume | 179 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2008 |
ASJC Scopus subject areas
- Genetics
- Genetics(clinical)