Single cell transcriptional profiling of adult mouse cardiomyocytes.

James M. Flynn, Luis Fernando Santana, Simon Melov

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

While numerous studies have examined gene expression changes from homogenates of heart tissue, this prevents studying the inherent stochastic variation between cells within a tissue. Isolation of pure cardiomyocyte populations through a collagenase perfusion of mouse hearts facilitates the generation of single cell microarrays for whole transcriptome gene expression, or qPCR of specific targets using nanofluidic arrays. We describe here a procedure to examine single cell gene expression profiles of cardiomyocytes isolated from the heart. This paradigm allows for the evaluation of metrics of interest which are not reliant on the mean (for example variance between cells within a tissue) which is not possible when using conventional whole tissue workflows for the evaluation of gene expression (Figure 1). We have achieved robust amplification of the single cell transcriptome yielding micrograms of double stranded cDNA that facilitates the use of microarrays on individual cells. In the procedure we describe the use of NimbleGen arrays which were selected for their ease of use and ability to customize their design. Alternatively, a reverse transcriptase - specific target amplification (RT-STA) reaction, allows for qPCR of hundreds of targets by nanofluidic PCR. Using either of these approaches, it is possible to examine the variability of expression between cells, as well as examining expression profiles of rare cell types from within a tissue. Overall, the single cell gene expression approach allows for the generation of data that can potentially identify idiosyncratic expression profiles that are typically averaged out when examining expression of millions of cells from typical homogenates generated from whole tissues.

Original languageEnglish (US)
JournalJournal of visualized experiments : JoVE
Issue number58
StatePublished - 2011
Externally publishedYes

Fingerprint

Cardiac Myocytes
Gene expression
Tissue
Nanofluidics
Microarrays
Amplification
Transcriptome
Gene Expression
RNA-Directed DNA Polymerase
Collagenases
Complementary DNA
Workflow
Perfusion
Polymerase Chain Reaction

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Single cell transcriptional profiling of adult mouse cardiomyocytes. / Flynn, James M.; Santana, Luis Fernando; Melov, Simon.

In: Journal of visualized experiments : JoVE, No. 58, 2011.

Research output: Contribution to journalArticle

@article{b931dd22f5d64d46b4106aee33cf1d0f,
title = "Single cell transcriptional profiling of adult mouse cardiomyocytes.",
abstract = "While numerous studies have examined gene expression changes from homogenates of heart tissue, this prevents studying the inherent stochastic variation between cells within a tissue. Isolation of pure cardiomyocyte populations through a collagenase perfusion of mouse hearts facilitates the generation of single cell microarrays for whole transcriptome gene expression, or qPCR of specific targets using nanofluidic arrays. We describe here a procedure to examine single cell gene expression profiles of cardiomyocytes isolated from the heart. This paradigm allows for the evaluation of metrics of interest which are not reliant on the mean (for example variance between cells within a tissue) which is not possible when using conventional whole tissue workflows for the evaluation of gene expression (Figure 1). We have achieved robust amplification of the single cell transcriptome yielding micrograms of double stranded cDNA that facilitates the use of microarrays on individual cells. In the procedure we describe the use of NimbleGen arrays which were selected for their ease of use and ability to customize their design. Alternatively, a reverse transcriptase - specific target amplification (RT-STA) reaction, allows for qPCR of hundreds of targets by nanofluidic PCR. Using either of these approaches, it is possible to examine the variability of expression between cells, as well as examining expression profiles of rare cell types from within a tissue. Overall, the single cell gene expression approach allows for the generation of data that can potentially identify idiosyncratic expression profiles that are typically averaged out when examining expression of millions of cells from typical homogenates generated from whole tissues.",
author = "Flynn, {James M.} and Santana, {Luis Fernando} and Simon Melov",
year = "2011",
language = "English (US)",
journal = "Journal of Visualized Experiments",
issn = "1940-087X",
publisher = "MYJoVE Corporation",
number = "58",

}

TY - JOUR

T1 - Single cell transcriptional profiling of adult mouse cardiomyocytes.

AU - Flynn, James M.

AU - Santana, Luis Fernando

AU - Melov, Simon

PY - 2011

Y1 - 2011

N2 - While numerous studies have examined gene expression changes from homogenates of heart tissue, this prevents studying the inherent stochastic variation between cells within a tissue. Isolation of pure cardiomyocyte populations through a collagenase perfusion of mouse hearts facilitates the generation of single cell microarrays for whole transcriptome gene expression, or qPCR of specific targets using nanofluidic arrays. We describe here a procedure to examine single cell gene expression profiles of cardiomyocytes isolated from the heart. This paradigm allows for the evaluation of metrics of interest which are not reliant on the mean (for example variance between cells within a tissue) which is not possible when using conventional whole tissue workflows for the evaluation of gene expression (Figure 1). We have achieved robust amplification of the single cell transcriptome yielding micrograms of double stranded cDNA that facilitates the use of microarrays on individual cells. In the procedure we describe the use of NimbleGen arrays which were selected for their ease of use and ability to customize their design. Alternatively, a reverse transcriptase - specific target amplification (RT-STA) reaction, allows for qPCR of hundreds of targets by nanofluidic PCR. Using either of these approaches, it is possible to examine the variability of expression between cells, as well as examining expression profiles of rare cell types from within a tissue. Overall, the single cell gene expression approach allows for the generation of data that can potentially identify idiosyncratic expression profiles that are typically averaged out when examining expression of millions of cells from typical homogenates generated from whole tissues.

AB - While numerous studies have examined gene expression changes from homogenates of heart tissue, this prevents studying the inherent stochastic variation between cells within a tissue. Isolation of pure cardiomyocyte populations through a collagenase perfusion of mouse hearts facilitates the generation of single cell microarrays for whole transcriptome gene expression, or qPCR of specific targets using nanofluidic arrays. We describe here a procedure to examine single cell gene expression profiles of cardiomyocytes isolated from the heart. This paradigm allows for the evaluation of metrics of interest which are not reliant on the mean (for example variance between cells within a tissue) which is not possible when using conventional whole tissue workflows for the evaluation of gene expression (Figure 1). We have achieved robust amplification of the single cell transcriptome yielding micrograms of double stranded cDNA that facilitates the use of microarrays on individual cells. In the procedure we describe the use of NimbleGen arrays which were selected for their ease of use and ability to customize their design. Alternatively, a reverse transcriptase - specific target amplification (RT-STA) reaction, allows for qPCR of hundreds of targets by nanofluidic PCR. Using either of these approaches, it is possible to examine the variability of expression between cells, as well as examining expression profiles of rare cell types from within a tissue. Overall, the single cell gene expression approach allows for the generation of data that can potentially identify idiosyncratic expression profiles that are typically averaged out when examining expression of millions of cells from typical homogenates generated from whole tissues.

UR - http://www.scopus.com/inward/record.url?scp=84857131354&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857131354&partnerID=8YFLogxK

M3 - Article

JO - Journal of Visualized Experiments

JF - Journal of Visualized Experiments

SN - 1940-087X

IS - 58

ER -