Simulation of an early warning system using sentinel birds to detect a change of a low pathogenic avian influenza virus (LPAIV) to high pathogenic avian influenza virus (HPAIV)

Cristobal Verdugo, Carol J. Cardona, Tim Carpenter

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The placement of sentinel birds in a commercial poultry flock infected with low pathogenic avian influenza virus (LPAIV) may be an effective way of detecting subsequent change in the isolate to a high pathogenic avian influenza virus (HPAIV). Data collected from the 2002 Chilean HPAIV outbreak, along with information from a literature review of laboratory studies involving A/chicken/Chile/176822/02 (H7N3/LP) and A/chicken/Chile/184240-1/02 (H7N3/HP) viruses, were used to construct a computer simulation model. Mortality rates of the original LPAIV-infected population and the sentinel population were compared to detect the presence of HPAIV. A total of 12 increased mortality threshold scenarios were examined, using one-day absolute (2, 3, or 4 birds) or relative (0.5, 1.0, or 1.5%) mortality thresholds, and two-day absolute (1, 2, or 3 birds) or relative (0.25, 0.50, or 1.00%) mortality thresholds, to indicate the change from LPAIV to HPAIV in the sentinel and original populations, respectively. Results showed that following a one-day approach, threshold mortalities occurred on average at 7.35, 7.82, and 8.17 (0.5, 1.0, or 1.5%) and 6.21, 6.38, and 6.45 (2, 3, or 4 birds) days after the first infectious case for the original and sentinel populations, respectively. The two-day approach delayed the occurrence of threshold mortalities, on average, to 7.64, 8.05, and 8.62 (0.25, 0.50, or 1.00%) and 6.86, 6.78, and 7.23 (1, 2, or 3 birds) days after the first infectious case for the original and sentinel populations, respectively. Although, significant (p < 0.10) differences were observed among different combinations of detection times for the original and sentinel populations, the use of sentinel birds has a maximum mean advantage, over monitoring mortality exclusively in the original population, of 1.96 and 1.84 days for one- and two-day threshold moralities, respectively. Additionally, the early warning system based on a sentinel vs. original population presented a decrease of the probabilities of a false alarm, from 0.04-0.45 to <0.01-0.10%. These findings may be used by decision makers to evaluate the risk of not depopulating a flock infected with a H5 or H7 LPAIV strain and the benefit of using sentinel birds as an early warning system of a change to HPAIV.

Original languageEnglish (US)
Pages (from-to)109-119
Number of pages11
JournalPreventive Veterinary Medicine
Volume88
Issue number2
DOIs
StatePublished - Feb 1 2009

Fingerprint

early warning systems
Influenza in Birds
Orthomyxoviridae
Influenza A virus
Birds
birds
Mortality
Population
Chile
H7N3 Subtype Influenza A Virus
Computer Simulation
Chickens
flocks
chickens
cyhalothrin
Poultry
computer simulation
Disease Outbreaks
simulation models
poultry

Keywords

  • Avian influenza
  • Broiler chickens
  • Chile
  • Early warning system
  • Sentinel birds
  • Simulation model

ASJC Scopus subject areas

  • Food Animals
  • Animal Science and Zoology

Cite this

@article{a3f1dff77e5b4ad48acb6e2c7c43994e,
title = "Simulation of an early warning system using sentinel birds to detect a change of a low pathogenic avian influenza virus (LPAIV) to high pathogenic avian influenza virus (HPAIV)",
abstract = "The placement of sentinel birds in a commercial poultry flock infected with low pathogenic avian influenza virus (LPAIV) may be an effective way of detecting subsequent change in the isolate to a high pathogenic avian influenza virus (HPAIV). Data collected from the 2002 Chilean HPAIV outbreak, along with information from a literature review of laboratory studies involving A/chicken/Chile/176822/02 (H7N3/LP) and A/chicken/Chile/184240-1/02 (H7N3/HP) viruses, were used to construct a computer simulation model. Mortality rates of the original LPAIV-infected population and the sentinel population were compared to detect the presence of HPAIV. A total of 12 increased mortality threshold scenarios were examined, using one-day absolute (2, 3, or 4 birds) or relative (0.5, 1.0, or 1.5{\%}) mortality thresholds, and two-day absolute (1, 2, or 3 birds) or relative (0.25, 0.50, or 1.00{\%}) mortality thresholds, to indicate the change from LPAIV to HPAIV in the sentinel and original populations, respectively. Results showed that following a one-day approach, threshold mortalities occurred on average at 7.35, 7.82, and 8.17 (0.5, 1.0, or 1.5{\%}) and 6.21, 6.38, and 6.45 (2, 3, or 4 birds) days after the first infectious case for the original and sentinel populations, respectively. The two-day approach delayed the occurrence of threshold mortalities, on average, to 7.64, 8.05, and 8.62 (0.25, 0.50, or 1.00{\%}) and 6.86, 6.78, and 7.23 (1, 2, or 3 birds) days after the first infectious case for the original and sentinel populations, respectively. Although, significant (p < 0.10) differences were observed among different combinations of detection times for the original and sentinel populations, the use of sentinel birds has a maximum mean advantage, over monitoring mortality exclusively in the original population, of 1.96 and 1.84 days for one- and two-day threshold moralities, respectively. Additionally, the early warning system based on a sentinel vs. original population presented a decrease of the probabilities of a false alarm, from 0.04-0.45 to <0.01-0.10{\%}. These findings may be used by decision makers to evaluate the risk of not depopulating a flock infected with a H5 or H7 LPAIV strain and the benefit of using sentinel birds as an early warning system of a change to HPAIV.",
keywords = "Avian influenza, Broiler chickens, Chile, Early warning system, Sentinel birds, Simulation model",
author = "Cristobal Verdugo and Cardona, {Carol J.} and Tim Carpenter",
year = "2009",
month = "2",
day = "1",
doi = "10.1016/j.prevetmed.2008.08.007",
language = "English (US)",
volume = "88",
pages = "109--119",
journal = "Preventive Veterinary Medicine",
issn = "0167-5877",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - Simulation of an early warning system using sentinel birds to detect a change of a low pathogenic avian influenza virus (LPAIV) to high pathogenic avian influenza virus (HPAIV)

AU - Verdugo, Cristobal

AU - Cardona, Carol J.

AU - Carpenter, Tim

PY - 2009/2/1

Y1 - 2009/2/1

N2 - The placement of sentinel birds in a commercial poultry flock infected with low pathogenic avian influenza virus (LPAIV) may be an effective way of detecting subsequent change in the isolate to a high pathogenic avian influenza virus (HPAIV). Data collected from the 2002 Chilean HPAIV outbreak, along with information from a literature review of laboratory studies involving A/chicken/Chile/176822/02 (H7N3/LP) and A/chicken/Chile/184240-1/02 (H7N3/HP) viruses, were used to construct a computer simulation model. Mortality rates of the original LPAIV-infected population and the sentinel population were compared to detect the presence of HPAIV. A total of 12 increased mortality threshold scenarios were examined, using one-day absolute (2, 3, or 4 birds) or relative (0.5, 1.0, or 1.5%) mortality thresholds, and two-day absolute (1, 2, or 3 birds) or relative (0.25, 0.50, or 1.00%) mortality thresholds, to indicate the change from LPAIV to HPAIV in the sentinel and original populations, respectively. Results showed that following a one-day approach, threshold mortalities occurred on average at 7.35, 7.82, and 8.17 (0.5, 1.0, or 1.5%) and 6.21, 6.38, and 6.45 (2, 3, or 4 birds) days after the first infectious case for the original and sentinel populations, respectively. The two-day approach delayed the occurrence of threshold mortalities, on average, to 7.64, 8.05, and 8.62 (0.25, 0.50, or 1.00%) and 6.86, 6.78, and 7.23 (1, 2, or 3 birds) days after the first infectious case for the original and sentinel populations, respectively. Although, significant (p < 0.10) differences were observed among different combinations of detection times for the original and sentinel populations, the use of sentinel birds has a maximum mean advantage, over monitoring mortality exclusively in the original population, of 1.96 and 1.84 days for one- and two-day threshold moralities, respectively. Additionally, the early warning system based on a sentinel vs. original population presented a decrease of the probabilities of a false alarm, from 0.04-0.45 to <0.01-0.10%. These findings may be used by decision makers to evaluate the risk of not depopulating a flock infected with a H5 or H7 LPAIV strain and the benefit of using sentinel birds as an early warning system of a change to HPAIV.

AB - The placement of sentinel birds in a commercial poultry flock infected with low pathogenic avian influenza virus (LPAIV) may be an effective way of detecting subsequent change in the isolate to a high pathogenic avian influenza virus (HPAIV). Data collected from the 2002 Chilean HPAIV outbreak, along with information from a literature review of laboratory studies involving A/chicken/Chile/176822/02 (H7N3/LP) and A/chicken/Chile/184240-1/02 (H7N3/HP) viruses, were used to construct a computer simulation model. Mortality rates of the original LPAIV-infected population and the sentinel population were compared to detect the presence of HPAIV. A total of 12 increased mortality threshold scenarios were examined, using one-day absolute (2, 3, or 4 birds) or relative (0.5, 1.0, or 1.5%) mortality thresholds, and two-day absolute (1, 2, or 3 birds) or relative (0.25, 0.50, or 1.00%) mortality thresholds, to indicate the change from LPAIV to HPAIV in the sentinel and original populations, respectively. Results showed that following a one-day approach, threshold mortalities occurred on average at 7.35, 7.82, and 8.17 (0.5, 1.0, or 1.5%) and 6.21, 6.38, and 6.45 (2, 3, or 4 birds) days after the first infectious case for the original and sentinel populations, respectively. The two-day approach delayed the occurrence of threshold mortalities, on average, to 7.64, 8.05, and 8.62 (0.25, 0.50, or 1.00%) and 6.86, 6.78, and 7.23 (1, 2, or 3 birds) days after the first infectious case for the original and sentinel populations, respectively. Although, significant (p < 0.10) differences were observed among different combinations of detection times for the original and sentinel populations, the use of sentinel birds has a maximum mean advantage, over monitoring mortality exclusively in the original population, of 1.96 and 1.84 days for one- and two-day threshold moralities, respectively. Additionally, the early warning system based on a sentinel vs. original population presented a decrease of the probabilities of a false alarm, from 0.04-0.45 to <0.01-0.10%. These findings may be used by decision makers to evaluate the risk of not depopulating a flock infected with a H5 or H7 LPAIV strain and the benefit of using sentinel birds as an early warning system of a change to HPAIV.

KW - Avian influenza

KW - Broiler chickens

KW - Chile

KW - Early warning system

KW - Sentinel birds

KW - Simulation model

UR - http://www.scopus.com/inward/record.url?scp=57849115245&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57849115245&partnerID=8YFLogxK

U2 - 10.1016/j.prevetmed.2008.08.007

DO - 10.1016/j.prevetmed.2008.08.007

M3 - Article

C2 - 18977544

AN - SCOPUS:57849115245

VL - 88

SP - 109

EP - 119

JO - Preventive Veterinary Medicine

JF - Preventive Veterinary Medicine

SN - 0167-5877

IS - 2

ER -