Sensitization of B16 tumor cells with a CXCR4 antagonist increases the efficacy of immunotherapy for established lung metastases

Chih Hung Lee, Takashi Kakinuma, Julia Wang, Hong Zhang, Douglas C. Palmer, Nicholas P. Restifo, Samuel T Hwang

Research output: Contribution to journalArticle

43 Scopus citations

Abstract

Expression of the chemokine receptor CXCR4 by tumor cells promotes metastasis, possibly by activating pro-survival signals that render cancer cells resistant to immune attack. Inhibition of CXCR4 with a peptide antagonist, T22, blocks metastatic implantation of CXCR4-transduced B16 (CXCR4-luc-B16) melanoma cells in lung, but not the outgrowth of established metastases, raising the question of how T22 can best be used in a clinical setting. Herein, whereas the treatment of CXCR4-luc-B16 cells in vitro with the CXCR4 ligand CXCL12 did not reduce killing induced by cisplatin or cyclophosphamide, CXCL12 markedly reduced Fas-dependent killing by gp1OO-specific pmel-1) CD8+ T cells. T22 pretreatment restored sensitivity of CXCR4-luc-B16 cells to pmel-1 killing, even in the presence of CXCL12. Two immune-augmenting regimens were used in combination with T22 to treat experimental lung metastases. First, low-dose cyclophosphamide treatment (100 mg/kg) on day 5 in combination with T22 (days 4-7) yielded a ∼70% reduction of B16 metastatic tumor burden in the lungs compared with cyclophosphamide treatment alone (P < 0.001). Furthermore, whereas anti-CTL antigen 4 (CTLA4) monoclonal antibody (mAb; or T22 treatment) alone had little effect on established B16 metastases, pretreatment with T22 (in combination with anti-CTLA4 mAb) resulted in a 50% reduction in lung tumor burden (P = 0.02). Thus, in vitro, CXCR4 antagonism with T22 renders B16 cells susceptible to killing by antigen-specific T cells. In vivo, T22 synergizes with cyclophosphamide or anti-CTLA4 mAb in the treatment of established lung metastases, suggesting a novel strategy for augmenting the efficacy of immunotherapy.

Original languageEnglish (US)
Pages (from-to)2592-2599
Number of pages8
JournalMolecular Cancer Therapeutics
Volume5
Issue number10
DOIs
StatePublished - Oct 2006
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this