Secretoneurin Is an Endogenous Calcium/Calmodulin-Dependent Protein Kinase II Inhibitor That Attenuates Ca2+-Dependent Arrhythmia

Anett H. Ottesen, Cathrine R. Carlson, Olav Søvik Eken, Mani Sadredini, Peder L. Myhre, Xin Shen, Bjørn Dalhus, Derek R. Laver, Per Kristian Lunde, Jouni Kurola, Marianne Lunde, Jon Erik Hoff, Kristin Godang, Ivar Sjaastad, Ville Pettilä, Mats Stridsberg, Stephan E. Lehnart, Andrew G. Edwards, Ida G. Lunde, Torbjørn OmlandMathis K. Stokke, Geir Christensen, Helge Røsjø, William E. Louch

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Background: Circulating SN (secretoneurin) concentrations are increased in patients with myocardial dysfunction and predict poor outcome. Because SN inhibits CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) activity, we hypothesized that upregulation of SN in patients protects against cardiomyocyte mechanisms of arrhythmia. Methods: Circulating levels of SN and other biomarkers were assessed in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT; n=8) and in resuscitated patients after ventricular arrhythmia-induced cardiac arrest (n=155). In vivo effects of SN were investigated in CPVT mice (RyR2 [ryanodine receptor 2]-R2474S) using adeno-associated virus-9-induced overexpression. Interactions between SN and CaMKIIδ were mapped using pull-down experiments, mutagenesis, ELISA, and structural homology modeling. Ex vivo actions were tested in Langendorff hearts and effects on Ca2+ homeostasis examined by fluorescence (fluo-4) and patch-clamp recordings in isolated cardiomyocytes. Results: SN levels were elevated in patients with CPVT and following ventricular arrhythmia-induced cardiac arrest. In contrast to NT-proBNP (N-terminal pro-B-type natriuretic peptide) and hs-TnT (high-sensitivity troponin T), circulating SN levels declined after resuscitation, as the risk of a new arrhythmia waned. Myocardial pro-SN expression was also increased in CPVT mice, and further adeno-associated virus-9-induced overexpression of SN attenuated arrhythmic induction during stress testing with isoproterenol. Mechanistic studies mapped SN binding to the substrate binding site in the catalytic region of CaMKIIδ. Accordingly, SN attenuated isoproterenol induced autophosphorylation of Thr287-CaMKIIδ in Langendorff hearts and inhibited CaMKIIδ-dependent RyR phosphorylation. In line with CaMKIIδ and RyR inhibition, SN treatment decreased Ca2+ spark frequency and dimensions in cardiomyocytes during isoproterenol challenge, and reduced the incidence of Ca2+ waves, delayed afterdepolarizations, and spontaneous action potentials. SN treatment also lowered the incidence of early afterdepolarizations during isoproterenol; an effect paralleled by reduced magnitude of L-type Ca2+ current. Conclusions: SN production is upregulated in conditions with cardiomyocyte Ca2+ dysregulation and offers compensatory protection against cardiomyocyte mechanisms of arrhythmia, which may underlie its putative use as a biomarker in at-risk patients.

Original languageEnglish (US)
Article numbere007045
JournalCirculation: Arrhythmia and Electrophysiology
Volume12
Issue number4
DOIs
StatePublished - Apr 1 2019
Externally publishedYes

Keywords

  • calcium
  • calmodulin
  • heart failure
  • secretoneurin
  • tachycardia

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Secretoneurin Is an Endogenous Calcium/Calmodulin-Dependent Protein Kinase II Inhibitor That Attenuates Ca<sup>2+</sup>-Dependent Arrhythmia'. Together they form a unique fingerprint.

  • Cite this

    Ottesen, A. H., Carlson, C. R., Eken, O. S., Sadredini, M., Myhre, P. L., Shen, X., Dalhus, B., Laver, D. R., Lunde, P. K., Kurola, J., Lunde, M., Hoff, J. E., Godang, K., Sjaastad, I., Pettilä, V., Stridsberg, M., Lehnart, S. E., Edwards, A. G., Lunde, I. G., ... Louch, W. E. (2019). Secretoneurin Is an Endogenous Calcium/Calmodulin-Dependent Protein Kinase II Inhibitor That Attenuates Ca2+-Dependent Arrhythmia. Circulation: Arrhythmia and Electrophysiology, 12(4), [e007045]. https://doi.org/10.1161/CIRCEP.118.007045