Role of protein-protein interactions during herpes simplex virus type I recombination-dependent replication

Amitabh V. Nimonkar, Paul E. Boehmer

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Recombination-dependent replication is an integral part of the process by which double-strand DNA breaks are repaired to maintain genome integrity. It also serves as a means to replicate genomic termini. We reported previously on the reconstitution of a recombination-dependent replication system using purified herpes simplex virus type 1 proteins (Nimonkar A. V., and Boehmer, P. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10201-10206). In this system, homologous pairing by the viral single-strand DNA-binding protein (ICP8) is coupled to DNA synthesis by the viral DNA polymerase and helicase-primase in the presence of a DNA-relaxing enzyme. Here we show that DNA synthesis in this system is dependent on the viral polymerase processivity factor (UL42). Moreover, although DNA synthesis is strictly dependent on topoisomerase I, it is only stimulated by the viral helicase in a manner that requires the helicase-loading protein (UL8). Furthermore, we have examined the dependence of DNA synthesis in the viral system on species-specific protein-protein interactions. Optimal DNA synthesis was observed with the herpes simplex virus type 1 replication proteins, ICP8, DNA polymerase (UL30/UL42), and helicase-primase (UL5/UL52/UL8). Interestingly, substitution of each component with functional homologues from other systems for the most part did not drastically impede DNA synthesis. In contrast, recombination-dependent replication promoted by the bacteriophage T7 replisome was disrupted by substitution with the replication proteins from herpes simplex virus type 1. These results show that although DNA synthesis performed by the T7 replisome is dependent on cognate protein-protein interactions, such interactions are less important in the herpes simplex virus replisome.

Original languageEnglish (US)
Pages (from-to)21957-21965
Number of pages9
JournalJournal of Biological Chemistry
Volume279
Issue number21
DOIs
StatePublished - May 21 2004
Externally publishedYes

Fingerprint

Simplexvirus
Viruses
Genetic Recombination
DNA
Human Herpesvirus 1
Proteins
DNA Primase
Type I DNA Topoisomerase
DNA-Directed DNA Polymerase
Substitution reactions
DNA Helicases
Bacteriophage T7
Bacteriophages
Double-Stranded DNA Breaks
Viral DNA
DNA-Binding Proteins
Virus Replication
Genes
Genome

ASJC Scopus subject areas

  • Biochemistry

Cite this

Role of protein-protein interactions during herpes simplex virus type I recombination-dependent replication. / Nimonkar, Amitabh V.; Boehmer, Paul E.

In: Journal of Biological Chemistry, Vol. 279, No. 21, 21.05.2004, p. 21957-21965.

Research output: Contribution to journalArticle

@article{421fc5311bfb4f75b0a8e5e6322287c2,
title = "Role of protein-protein interactions during herpes simplex virus type I recombination-dependent replication",
abstract = "Recombination-dependent replication is an integral part of the process by which double-strand DNA breaks are repaired to maintain genome integrity. It also serves as a means to replicate genomic termini. We reported previously on the reconstitution of a recombination-dependent replication system using purified herpes simplex virus type 1 proteins (Nimonkar A. V., and Boehmer, P. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10201-10206). In this system, homologous pairing by the viral single-strand DNA-binding protein (ICP8) is coupled to DNA synthesis by the viral DNA polymerase and helicase-primase in the presence of a DNA-relaxing enzyme. Here we show that DNA synthesis in this system is dependent on the viral polymerase processivity factor (UL42). Moreover, although DNA synthesis is strictly dependent on topoisomerase I, it is only stimulated by the viral helicase in a manner that requires the helicase-loading protein (UL8). Furthermore, we have examined the dependence of DNA synthesis in the viral system on species-specific protein-protein interactions. Optimal DNA synthesis was observed with the herpes simplex virus type 1 replication proteins, ICP8, DNA polymerase (UL30/UL42), and helicase-primase (UL5/UL52/UL8). Interestingly, substitution of each component with functional homologues from other systems for the most part did not drastically impede DNA synthesis. In contrast, recombination-dependent replication promoted by the bacteriophage T7 replisome was disrupted by substitution with the replication proteins from herpes simplex virus type 1. These results show that although DNA synthesis performed by the T7 replisome is dependent on cognate protein-protein interactions, such interactions are less important in the herpes simplex virus replisome.",
author = "Nimonkar, {Amitabh V.} and Boehmer, {Paul E.}",
year = "2004",
month = "5",
day = "21",
doi = "10.1074/jbc.M400832200",
language = "English (US)",
volume = "279",
pages = "21957--21965",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "21",

}

TY - JOUR

T1 - Role of protein-protein interactions during herpes simplex virus type I recombination-dependent replication

AU - Nimonkar, Amitabh V.

AU - Boehmer, Paul E.

PY - 2004/5/21

Y1 - 2004/5/21

N2 - Recombination-dependent replication is an integral part of the process by which double-strand DNA breaks are repaired to maintain genome integrity. It also serves as a means to replicate genomic termini. We reported previously on the reconstitution of a recombination-dependent replication system using purified herpes simplex virus type 1 proteins (Nimonkar A. V., and Boehmer, P. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10201-10206). In this system, homologous pairing by the viral single-strand DNA-binding protein (ICP8) is coupled to DNA synthesis by the viral DNA polymerase and helicase-primase in the presence of a DNA-relaxing enzyme. Here we show that DNA synthesis in this system is dependent on the viral polymerase processivity factor (UL42). Moreover, although DNA synthesis is strictly dependent on topoisomerase I, it is only stimulated by the viral helicase in a manner that requires the helicase-loading protein (UL8). Furthermore, we have examined the dependence of DNA synthesis in the viral system on species-specific protein-protein interactions. Optimal DNA synthesis was observed with the herpes simplex virus type 1 replication proteins, ICP8, DNA polymerase (UL30/UL42), and helicase-primase (UL5/UL52/UL8). Interestingly, substitution of each component with functional homologues from other systems for the most part did not drastically impede DNA synthesis. In contrast, recombination-dependent replication promoted by the bacteriophage T7 replisome was disrupted by substitution with the replication proteins from herpes simplex virus type 1. These results show that although DNA synthesis performed by the T7 replisome is dependent on cognate protein-protein interactions, such interactions are less important in the herpes simplex virus replisome.

AB - Recombination-dependent replication is an integral part of the process by which double-strand DNA breaks are repaired to maintain genome integrity. It also serves as a means to replicate genomic termini. We reported previously on the reconstitution of a recombination-dependent replication system using purified herpes simplex virus type 1 proteins (Nimonkar A. V., and Boehmer, P. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 10201-10206). In this system, homologous pairing by the viral single-strand DNA-binding protein (ICP8) is coupled to DNA synthesis by the viral DNA polymerase and helicase-primase in the presence of a DNA-relaxing enzyme. Here we show that DNA synthesis in this system is dependent on the viral polymerase processivity factor (UL42). Moreover, although DNA synthesis is strictly dependent on topoisomerase I, it is only stimulated by the viral helicase in a manner that requires the helicase-loading protein (UL8). Furthermore, we have examined the dependence of DNA synthesis in the viral system on species-specific protein-protein interactions. Optimal DNA synthesis was observed with the herpes simplex virus type 1 replication proteins, ICP8, DNA polymerase (UL30/UL42), and helicase-primase (UL5/UL52/UL8). Interestingly, substitution of each component with functional homologues from other systems for the most part did not drastically impede DNA synthesis. In contrast, recombination-dependent replication promoted by the bacteriophage T7 replisome was disrupted by substitution with the replication proteins from herpes simplex virus type 1. These results show that although DNA synthesis performed by the T7 replisome is dependent on cognate protein-protein interactions, such interactions are less important in the herpes simplex virus replisome.

UR - http://www.scopus.com/inward/record.url?scp=2542476881&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2542476881&partnerID=8YFLogxK

U2 - 10.1074/jbc.M400832200

DO - 10.1074/jbc.M400832200

M3 - Article

VL - 279

SP - 21957

EP - 21965

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 21

ER -