Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase

Fei Han, Julie B C Bossuyt, Jody L. Martin, Sanda Despa, Donald M Bers

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na+-K+-ATPase (NKA), mainly by reducing its affinity for internal Na+. The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α1 and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na+ concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na+ and had no significant effect on the maximum pump rate (Vmax). PKA activation with forskolin (20 μM) restored NKA Na+ affinity in cells expressing WT but not AA PLM and did not affect Vmax in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na+ affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume299
Issue number6
DOIs
StatePublished - Dec 2010

Fingerprint

Phosphotransferases
Phosphorylation
Phorbol 12,13-Dibutyrate
Colforsin
sodium-translocating ATPase
phospholemman
HeLa Cells
Cardiac Myocytes
Alanine

Keywords

  • Apparent Na affinity
  • FXYD
  • PKA
  • PKC

ASJC Scopus subject areas

  • Cell Biology
  • Physiology

Cite this

Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase. / Han, Fei; Bossuyt, Julie B C; Martin, Jody L.; Despa, Sanda; Bers, Donald M.

In: American Journal of Physiology - Cell Physiology, Vol. 299, No. 6, 12.2010.

Research output: Contribution to journalArticle

@article{3707de9c40774eb3a9aef78b2db7bcd7,
title = "Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase",
abstract = "Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na+-K+-ATPase (NKA), mainly by reducing its affinity for internal Na+. The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α1 and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na+ concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na+ and had no significant effect on the maximum pump rate (Vmax). PKA activation with forskolin (20 μM) restored NKA Na+ affinity in cells expressing WT but not AA PLM and did not affect Vmax in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na+ affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.",
keywords = "Apparent Na affinity, FXYD, PKA, PKC",
author = "Fei Han and Bossuyt, {Julie B C} and Martin, {Jody L.} and Sanda Despa and Bers, {Donald M}",
year = "2010",
month = "12",
doi = "10.1152/ajpcell.00027.2010",
language = "English (US)",
volume = "299",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase

AU - Han, Fei

AU - Bossuyt, Julie B C

AU - Martin, Jody L.

AU - Despa, Sanda

AU - Bers, Donald M

PY - 2010/12

Y1 - 2010/12

N2 - Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na+-K+-ATPase (NKA), mainly by reducing its affinity for internal Na+. The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α1 and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na+ concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na+ and had no significant effect on the maximum pump rate (Vmax). PKA activation with forskolin (20 μM) restored NKA Na+ affinity in cells expressing WT but not AA PLM and did not affect Vmax in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na+ affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.

AB - Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na+-K+-ATPase (NKA), mainly by reducing its affinity for internal Na+. The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α1 and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na+ concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na+ and had no significant effect on the maximum pump rate (Vmax). PKA activation with forskolin (20 μM) restored NKA Na+ affinity in cells expressing WT but not AA PLM and did not affect Vmax in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na+ affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.

KW - Apparent Na affinity

KW - FXYD

KW - PKA

KW - PKC

UR - http://www.scopus.com/inward/record.url?scp=78649659491&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78649659491&partnerID=8YFLogxK

U2 - 10.1152/ajpcell.00027.2010

DO - 10.1152/ajpcell.00027.2010

M3 - Article

C2 - 20861470

AN - SCOPUS:78649659491

VL - 299

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 6

ER -