TY - JOUR
T1 - Retinoid-X receptor agonists increase thyroid hormone competence in lower jaw remodeling of pre-metamorphic Xenopus laevis tadpoles
AU - Mengeling, Brenda J.
AU - Vetter, Lara F.
AU - Furlow, J. David
N1 - Funding Information:
JDF and BJM: R21 ES026271, National Institues of Environmental Health Sciences, https://www.niehs.nih.gov/JDF: P42 ES004699, National Institute of Environmental Health Sciences/Superfund Research Program, https://www.niehs.nih.gov/The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
Copyright: © 2022 Mengeling et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/4
Y1 - 2022/4
N2 - Thyroid hormone (TH) signaling plays critical roles during vertebrate development, including regulation of skeletal and cartilage growth. TH acts through its receptors (TRs), nuclear hormone receptors (NRs) that heterodimerize with Retinoid-X receptors (RXRs), to regulate gene expression. A defining difference between NR signaling during development compared to in adult tissues, is competence, the ability of the organism to respond to an endocrine signal. Amphibian metamorphosis, especially in Xenopus laevis, the African clawed frog, is a well-established in vivo model for studying the mechanisms of TH action during development. Previously, we’ve used one-week post-fertilization X. laevis tadpoles, which are only partially competent to TH, to show that in the tail, which is naturally refractive to exogenous T3 at this stage, RXR agonists increase TH competence, and that RXR antagonism inhibits the TH response. Here, we focused on the jaw that undergoes dramatic TH-mediated remodeling during metamorphosis in order to support new feeding and breathing styles. We used a battery of approaches in one-week-old tadpoles, including quantitative morphology, differential gene expression and whole mount cell proliferation assays, to show that both pharmacologic (bexarotene) and environmental (tributyltin) RXR agonists potentiated TH-induced responses but were inactive in the absence of TH; and the RXR antagonist UVI 3003 inhibited TH action. Bex and TBT significantly potentiated cellular proliferation and the TH induction of runx2, a transcription factor critical for developing cartilage and bone. Prominent targets of RXR-mediated TH potentiation were members of the matrix metalloprotease family, suggesting that RXR potentiation may emphasize pathways responsible for rapid changes during development.
AB - Thyroid hormone (TH) signaling plays critical roles during vertebrate development, including regulation of skeletal and cartilage growth. TH acts through its receptors (TRs), nuclear hormone receptors (NRs) that heterodimerize with Retinoid-X receptors (RXRs), to regulate gene expression. A defining difference between NR signaling during development compared to in adult tissues, is competence, the ability of the organism to respond to an endocrine signal. Amphibian metamorphosis, especially in Xenopus laevis, the African clawed frog, is a well-established in vivo model for studying the mechanisms of TH action during development. Previously, we’ve used one-week post-fertilization X. laevis tadpoles, which are only partially competent to TH, to show that in the tail, which is naturally refractive to exogenous T3 at this stage, RXR agonists increase TH competence, and that RXR antagonism inhibits the TH response. Here, we focused on the jaw that undergoes dramatic TH-mediated remodeling during metamorphosis in order to support new feeding and breathing styles. We used a battery of approaches in one-week-old tadpoles, including quantitative morphology, differential gene expression and whole mount cell proliferation assays, to show that both pharmacologic (bexarotene) and environmental (tributyltin) RXR agonists potentiated TH-induced responses but were inactive in the absence of TH; and the RXR antagonist UVI 3003 inhibited TH action. Bex and TBT significantly potentiated cellular proliferation and the TH induction of runx2, a transcription factor critical for developing cartilage and bone. Prominent targets of RXR-mediated TH potentiation were members of the matrix metalloprotease family, suggesting that RXR potentiation may emphasize pathways responsible for rapid changes during development.
UR - http://www.scopus.com/inward/record.url?scp=85128279195&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128279195&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0266946
DO - 10.1371/journal.pone.0266946
M3 - Article
C2 - 35417489
AN - SCOPUS:85128279195
VL - 17
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 4 April
M1 - e0266946
ER -