TY - JOUR
T1 - Retinoic acid mediates down-regulation of the α-fetoprotein gene through decreased expression of hepatocyte nuclear factors
AU - Magee, Thomas R.
AU - Cai, Yan
AU - El-Houseini, Motawa E.
AU - Locker, Joseph
AU - Wan, Yu-Jui Yvonne
PY - 1998/11/6
Y1 - 1998/11/6
N2 - α-Fetoprotein (AFP), a protein highly induced during fetal liver development, is down-regulated by retinoids in the human hepatoma cell line Hep3B, in contrast to up-regulation observed in other cell types. Previously, we have documented that such up-regulation involves direct effects through cis-retinoid X receptor-binding sites in the AFP enhancer. In this report, we show a distinctive effect of all-trans-retinoic acid (RA) in Hep3B cells. RA caused a marked decrease in AFP transcripts. Deletion analysis of the upstream regulatory region of the AFP gene revealed that cis-acting sites required for down-regulation resided near the promoter. Gel mobility shift assays for factors binding to key elements in the AFP promoter region demonstrated that hepatocyte nuclear factor (HNF) 1 binding was diminished in nuclear extracts from RA-treated cells. In addition, HNF4, which is not known to bind to the AFP promoter but does regulate HNF1, was also diminished. The levels of HNF1 and HNF4 mRNA were also decreased following RA treatment. AFP promoter-chloramphenicol acetyltransferase transient transfection assays demonstrated that the level of HNF1 had a direct impact on basal transcription as well as RA-mediated down-regulation of the AFP gene, and that co-transfection of HNF1 and HNF4, but not transfection of either factor alone, reversed the RA-mediated inhibition. Taken together these data point to an interaction among the RA, HNF1, and HNF4 signals, which is reflected in decreased expression of AFP.
AB - α-Fetoprotein (AFP), a protein highly induced during fetal liver development, is down-regulated by retinoids in the human hepatoma cell line Hep3B, in contrast to up-regulation observed in other cell types. Previously, we have documented that such up-regulation involves direct effects through cis-retinoid X receptor-binding sites in the AFP enhancer. In this report, we show a distinctive effect of all-trans-retinoic acid (RA) in Hep3B cells. RA caused a marked decrease in AFP transcripts. Deletion analysis of the upstream regulatory region of the AFP gene revealed that cis-acting sites required for down-regulation resided near the promoter. Gel mobility shift assays for factors binding to key elements in the AFP promoter region demonstrated that hepatocyte nuclear factor (HNF) 1 binding was diminished in nuclear extracts from RA-treated cells. In addition, HNF4, which is not known to bind to the AFP promoter but does regulate HNF1, was also diminished. The levels of HNF1 and HNF4 mRNA were also decreased following RA treatment. AFP promoter-chloramphenicol acetyltransferase transient transfection assays demonstrated that the level of HNF1 had a direct impact on basal transcription as well as RA-mediated down-regulation of the AFP gene, and that co-transfection of HNF1 and HNF4, but not transfection of either factor alone, reversed the RA-mediated inhibition. Taken together these data point to an interaction among the RA, HNF1, and HNF4 signals, which is reflected in decreased expression of AFP.
UR - http://www.scopus.com/inward/record.url?scp=0032491430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032491430&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.45.30024
DO - 10.1074/jbc.273.45.30024
M3 - Article
C2 - 9792724
AN - SCOPUS:0032491430
VL - 273
SP - 30024
EP - 30032
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 45
ER -