Rethinking environmental performance from a public health perspective: A comparative industry analysis

Dinah A. Koehler, Deborah H Bennett, Gregory A. Norris, John D. Spengler

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


To date the most common measures of environmental performance used to compare industries, and by extension firms or facilities, have been quantity of pollution emitted or hazardous waste generated. Discharge information, however, does not necessarily capture potential health effects. We propose an alternative environmental performance measure that includes the public health risks of toxic air emissions extended to industry supply chains using economic input-output life-cycle assessment. Cancer risk to the U.S. population was determined by applying a damage function to the Toxic Release Inventory (TRI) as modeled by CalTOX, a multimedia multi-pathway fate and exposure model. Risks were then translated into social costs using cancer willingness to pay. For a baseline emissions year of 1998, 260 excess cancer cases were calculated for 116 TRI chemicals, dominated by ingestion risk from polycyclic aromatic compounds and dioxins emitted by the primary aluminum and cement industries, respectively. The direct emissions of a small number of industry sectors account for most of the U.S. population cancer risk. For the majority of industry sectors, however; cancer risk per $1 million output is associated with supply chain upstream emissions. Ranking industries by total (direct + upstream) supply chain risk per economic output leads to different conclusions about the relative hazards associated with these industries than a conventional ranking based on emissions per economic output.

Original languageEnglish (US)
Pages (from-to)143-167
Number of pages25
JournalJournal of Industrial Ecology
Issue number3
StatePublished - Jun 2005


  • (PAH)
  • Assessment (EIO-LCA)
  • Cancer risk
  • Chemical emissions
  • Dioxins
  • Economic input-output life-cycle
  • Polycyclic aromatic hydrocarbons
  • Toxic release inventory (TRI)

ASJC Scopus subject areas

  • Environmental Science(all)
  • Ecology
  • Ecology, Evolution, Behavior and Systematics


Dive into the research topics of 'Rethinking environmental performance from a public health perspective: A comparative industry analysis'. Together they form a unique fingerprint.

Cite this