Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus

Hannah Romo, Joan L. Kenney, Bradley J. Blitvich, Aaron Brault

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Previous studies demonstrated an insect-specific flavivirus, Nhumirim virus (NHUV), can suppress growth of West Nile virus (WNV) and decrease transmission rates in NHUV/WNV co-inoculated Culex quinquefasciatus. To assess whether NHUV might interfere with transmission of other medically important flaviviruses, the ability of NHUV to suppress viral growth of Zika virus (ZIKV) and dengue-2 virus (DENV-2) was assessed in Aedes albopictus cells. Significant reductions in ZIKV (100,000-fold) and DENV-2 (10,000-fold) were observed in either cells concurrently inoculated with NHUV or pre-inoculated with NHUV. In contrast, only a transient 10-fold titer reduction was observed with an alphavirus, chikungunya virus. Additionally, restricted in vitro mosquito growth of ZIKV was associated with lowered levels of intracellular ZIKV RNA in NHUV co-inoculated cultures. To assess whether NHUV could modulate vector competence for ZIKV, NHUV-inoculated Aedes aegypti were orally exposed to ZIKV. NHUV-inoculated mosquitoes demonstrated significantly lower ZIKV infection rates (18%) compared to NHUV unexposed mosquitoes (51%) (p < 0.002). Similarly, lower ZIKV transmission rates were observed for NHUV/ZIKV dually intrathoracically inoculated mosquitoes (41%) compared to ZIKV only inoculated mosquitoes (78%) (p < 0.0001), suggesting that NHUV can interfere with both midgut infection and salivary gland infection of ZIKV in Ae. aegypti. These results indicate NHUV could be utilized to model superinfection exclusion mechanism(s) and to study the potential for the mosquito virome to impact transmission of medically important flaviviruses.

Original languageEnglish (US)
Article number181
JournalEmerging Microbes and Infections
Issue number1
StatePublished - Dec 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • Epidemiology
  • Parasitology
  • Microbiology
  • Immunology
  • Drug Discovery
  • Infectious Diseases
  • Virology


Dive into the research topics of 'Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus'. Together they form a unique fingerprint.

Cite this