Response of SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors to mitogen-activated protein kinase kinase kinase cascades is determined by alternative mRNA splicing

Brian Jonas, Natalia Varlakhanova, Fumihiko Hayakawa, Michael Goodson, Martin L. Privalsky

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

The SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors are important mediators of transcriptional repression by nuclear hormone receptors. SMRT is regulated by MAPK kinase kinase (MAPKKK) cascades that induce its release from its receptor partners, its export from nucleus to cytoplasm, and derepression of target gene expression. Intriguingly, the otherwise closely related N-CoR is refractory to MAPKKK signaling under the same conditions. However, both SMRT and N-CoR are expressed as a series of alternatively spliced protein variants differing in structure and function. We have now characterized the impact of this alternative mRNA splicing on the corepressor response to MAPKKK signaling. Whereas the SMRTα, SMRTτ, and SMRTsp2 splice variants are released from their nuclear receptor partners in response to MAPKKK activation, the SMRTsp18 variant, which resembles N-CoR in its overall molecular architecture, is relatively refractory to this kinase-induced release. Alternative splicing of N-CoR, in contrast, had only minimal effects on the resistance of this corepressor to MAPKKK inhibition. Notably, all of the SMRT splice variants examined redistributed from nucleus to cytoplasm in response to MAPKKK cascade signaling, but none of the N-CoR splice variants did so. Different tiers of the MAPKKK cascade hierarchy contributed to these different aspects of corepressor regulation, with MAP/ERK kinase kinase 1 and MAP/ERK kinase 1 regulating subcellular redistribution and ERK2 regulating nuclear receptor-corepressor interaction. We conclude that cells can customize their transcriptional response to MAPKKK cascade signaling by selective expression of the SMRT or N-CoR locus, by selective utilization of a specific corepressor splice variant, and by selective exploitation of specific tiers of the MAPK cascade.

Original languageEnglish (US)
Pages (from-to)1924-1939
Number of pages16
JournalMolecular Endocrinology
Volume21
Issue number8
DOIs
StatePublished - 2007

Fingerprint

Nuclear Receptor Co-Repressor 2
MAP Kinase Kinase Kinases
Co-Repressor Proteins
Alternative Splicing
Mitogen-Activated Protein Kinase Kinases
Messenger RNA
Phosphotransferases
Cytoplasmic and Nuclear Receptors
Cytoplasm
MAP Kinase Kinase Kinase 1

ASJC Scopus subject areas

  • Molecular Biology
  • Endocrinology, Diabetes and Metabolism

Cite this

@article{3a1cecfdb2274904998121b32ad8de81,
title = "Response of SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors to mitogen-activated protein kinase kinase kinase cascades is determined by alternative mRNA splicing",
abstract = "The SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors are important mediators of transcriptional repression by nuclear hormone receptors. SMRT is regulated by MAPK kinase kinase (MAPKKK) cascades that induce its release from its receptor partners, its export from nucleus to cytoplasm, and derepression of target gene expression. Intriguingly, the otherwise closely related N-CoR is refractory to MAPKKK signaling under the same conditions. However, both SMRT and N-CoR are expressed as a series of alternatively spliced protein variants differing in structure and function. We have now characterized the impact of this alternative mRNA splicing on the corepressor response to MAPKKK signaling. Whereas the SMRTα, SMRTτ, and SMRTsp2 splice variants are released from their nuclear receptor partners in response to MAPKKK activation, the SMRTsp18 variant, which resembles N-CoR in its overall molecular architecture, is relatively refractory to this kinase-induced release. Alternative splicing of N-CoR, in contrast, had only minimal effects on the resistance of this corepressor to MAPKKK inhibition. Notably, all of the SMRT splice variants examined redistributed from nucleus to cytoplasm in response to MAPKKK cascade signaling, but none of the N-CoR splice variants did so. Different tiers of the MAPKKK cascade hierarchy contributed to these different aspects of corepressor regulation, with MAP/ERK kinase kinase 1 and MAP/ERK kinase 1 regulating subcellular redistribution and ERK2 regulating nuclear receptor-corepressor interaction. We conclude that cells can customize their transcriptional response to MAPKKK cascade signaling by selective expression of the SMRT or N-CoR locus, by selective utilization of a specific corepressor splice variant, and by selective exploitation of specific tiers of the MAPK cascade.",
author = "Brian Jonas and Natalia Varlakhanova and Fumihiko Hayakawa and Michael Goodson and Privalsky, {Martin L.}",
year = "2007",
doi = "10.1210/me.2007-0035",
language = "English (US)",
volume = "21",
pages = "1924--1939",
journal = "Molecular Endocrinology",
issn = "0888-8809",
publisher = "The Endocrine Society",
number = "8",

}

TY - JOUR

T1 - Response of SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors to mitogen-activated protein kinase kinase kinase cascades is determined by alternative mRNA splicing

AU - Jonas, Brian

AU - Varlakhanova, Natalia

AU - Hayakawa, Fumihiko

AU - Goodson, Michael

AU - Privalsky, Martin L.

PY - 2007

Y1 - 2007

N2 - The SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors are important mediators of transcriptional repression by nuclear hormone receptors. SMRT is regulated by MAPK kinase kinase (MAPKKK) cascades that induce its release from its receptor partners, its export from nucleus to cytoplasm, and derepression of target gene expression. Intriguingly, the otherwise closely related N-CoR is refractory to MAPKKK signaling under the same conditions. However, both SMRT and N-CoR are expressed as a series of alternatively spliced protein variants differing in structure and function. We have now characterized the impact of this alternative mRNA splicing on the corepressor response to MAPKKK signaling. Whereas the SMRTα, SMRTτ, and SMRTsp2 splice variants are released from their nuclear receptor partners in response to MAPKKK activation, the SMRTsp18 variant, which resembles N-CoR in its overall molecular architecture, is relatively refractory to this kinase-induced release. Alternative splicing of N-CoR, in contrast, had only minimal effects on the resistance of this corepressor to MAPKKK inhibition. Notably, all of the SMRT splice variants examined redistributed from nucleus to cytoplasm in response to MAPKKK cascade signaling, but none of the N-CoR splice variants did so. Different tiers of the MAPKKK cascade hierarchy contributed to these different aspects of corepressor regulation, with MAP/ERK kinase kinase 1 and MAP/ERK kinase 1 regulating subcellular redistribution and ERK2 regulating nuclear receptor-corepressor interaction. We conclude that cells can customize their transcriptional response to MAPKKK cascade signaling by selective expression of the SMRT or N-CoR locus, by selective utilization of a specific corepressor splice variant, and by selective exploitation of specific tiers of the MAPK cascade.

AB - The SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors are important mediators of transcriptional repression by nuclear hormone receptors. SMRT is regulated by MAPK kinase kinase (MAPKKK) cascades that induce its release from its receptor partners, its export from nucleus to cytoplasm, and derepression of target gene expression. Intriguingly, the otherwise closely related N-CoR is refractory to MAPKKK signaling under the same conditions. However, both SMRT and N-CoR are expressed as a series of alternatively spliced protein variants differing in structure and function. We have now characterized the impact of this alternative mRNA splicing on the corepressor response to MAPKKK signaling. Whereas the SMRTα, SMRTτ, and SMRTsp2 splice variants are released from their nuclear receptor partners in response to MAPKKK activation, the SMRTsp18 variant, which resembles N-CoR in its overall molecular architecture, is relatively refractory to this kinase-induced release. Alternative splicing of N-CoR, in contrast, had only minimal effects on the resistance of this corepressor to MAPKKK inhibition. Notably, all of the SMRT splice variants examined redistributed from nucleus to cytoplasm in response to MAPKKK cascade signaling, but none of the N-CoR splice variants did so. Different tiers of the MAPKKK cascade hierarchy contributed to these different aspects of corepressor regulation, with MAP/ERK kinase kinase 1 and MAP/ERK kinase 1 regulating subcellular redistribution and ERK2 regulating nuclear receptor-corepressor interaction. We conclude that cells can customize their transcriptional response to MAPKKK cascade signaling by selective expression of the SMRT or N-CoR locus, by selective utilization of a specific corepressor splice variant, and by selective exploitation of specific tiers of the MAPK cascade.

UR - http://www.scopus.com/inward/record.url?scp=34547483059&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34547483059&partnerID=8YFLogxK

U2 - 10.1210/me.2007-0035

DO - 10.1210/me.2007-0035

M3 - Article

C2 - 17519355

AN - SCOPUS:34547483059

VL - 21

SP - 1924

EP - 1939

JO - Molecular Endocrinology

JF - Molecular Endocrinology

SN - 0888-8809

IS - 8

ER -