Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1- dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells

Fei Huang, Cheng Yuan Kao, Shinichiro Wachi, Philip Thai, Jisu Ryu, Reen Wu

Research output: Contribution to journalArticle

153 Citations (Scopus)

Abstract

Through DNA microarray analysis and quantitative PCR verification, we have identified additional IL-17A-inducible genes-IL-19, CXCL-1, -2, -3, -5, and -6 - in well-differentiated normal human bronchial epithelial cells. These genes, similar to previously described human β-defensin-2 (HBD-2) and CCL-20, were induced by a basolateral treatment of IL-17A, and regulated by PI3K signaling and NF-κB activation. For PI3K signaling, increases of cellular PIP 3 and phosphorylation of downstream molecules, such as Akt and glycogen synthase kinase-3β (GSK3β) (S9), were detected. Induced gene expression and HBD-2 promoter activity were attenuated by LY294002, p110α small-interfering RNA (siRNA), as well as by an overexpression of constitutively active GSK3β(S9A) or wild-type phosphatase and tensin homolog. Increased phosphorylation of JAK1/2 after IL-17A treatment was detected in primary normal human bronchial epithelium cells. Transfected siRNAs of JAK molecules and JAK inhibitor I decreased IL-17A-induced gene expression and GSK3β(S9) phosphorylation. However, both JAK inhibitor I and PI3K inhibitor had no effect on the DNA-binding activities of p65 and p50 to NF-κB consensus sequences. This result suggested a JAK-associated PI3K signaling axis is independent from NF-κB activation. With siRNA to knockdown STIR (similar expression to fibroblast growth factor and IL-17R; Toll-IL-1R)-related signaling molecules, such as Act1, TNFR-associated factor 6 (TRAF6), and TGF-β-activated kinase 1 (TAK1), and transfection of A52R, an inhibitor of the MyD88/TRAF6 complex, or dominant-negative TAK1, IL-17A-inducible gene expression and HBD-2 promoter activity were reduced. Additionally, IL-17A-induced p65 and p50 NF-κB activations were confirmed and their nuclear translocations were down-regulated by siRNAs of TRAF6 and TAK1. These results suggest that two independent and indispensable signaling pathways - 1) JAK1-associated PI3K signaling and 2) Act1/TRAF6/TAK1-mediated NF-κB activation - are stimulated by IL-17A to regulate gene induction in human airway epithelial cells.

Original languageEnglish (US)
Pages (from-to)6504-6513
Number of pages10
JournalJournal of Immunology
Volume179
Issue number10
StatePublished - Nov 15 2007

Fingerprint

Interleukin-17
Phosphatidylinositol 3-Kinases
Phosphotransferases
Epithelial Cells
Cytokines
Glycogen Synthase Kinase 3
Phosphorylation
Gene Expression
Small Interfering RNA
Genes
Defensins
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Fibroblast Growth Factors
Consensus Sequence
Microarray Analysis
Oligonucleotide Array Sequence Analysis
Phosphoric Monoester Hydrolases
Transfection
Epithelium
Polymerase Chain Reaction

ASJC Scopus subject areas

  • Immunology

Cite this

Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1- dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. / Huang, Fei; Kao, Cheng Yuan; Wachi, Shinichiro; Thai, Philip; Ryu, Jisu; Wu, Reen.

In: Journal of Immunology, Vol. 179, No. 10, 15.11.2007, p. 6504-6513.

Research output: Contribution to journalArticle

@article{637c068c868a4bc2bbfce47fe43f0618,
title = "Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1- dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells",
abstract = "Through DNA microarray analysis and quantitative PCR verification, we have identified additional IL-17A-inducible genes-IL-19, CXCL-1, -2, -3, -5, and -6 - in well-differentiated normal human bronchial epithelial cells. These genes, similar to previously described human β-defensin-2 (HBD-2) and CCL-20, were induced by a basolateral treatment of IL-17A, and regulated by PI3K signaling and NF-κB activation. For PI3K signaling, increases of cellular PIP 3 and phosphorylation of downstream molecules, such as Akt and glycogen synthase kinase-3β (GSK3β) (S9), were detected. Induced gene expression and HBD-2 promoter activity were attenuated by LY294002, p110α small-interfering RNA (siRNA), as well as by an overexpression of constitutively active GSK3β(S9A) or wild-type phosphatase and tensin homolog. Increased phosphorylation of JAK1/2 after IL-17A treatment was detected in primary normal human bronchial epithelium cells. Transfected siRNAs of JAK molecules and JAK inhibitor I decreased IL-17A-induced gene expression and GSK3β(S9) phosphorylation. However, both JAK inhibitor I and PI3K inhibitor had no effect on the DNA-binding activities of p65 and p50 to NF-κB consensus sequences. This result suggested a JAK-associated PI3K signaling axis is independent from NF-κB activation. With siRNA to knockdown STIR (similar expression to fibroblast growth factor and IL-17R; Toll-IL-1R)-related signaling molecules, such as Act1, TNFR-associated factor 6 (TRAF6), and TGF-β-activated kinase 1 (TAK1), and transfection of A52R, an inhibitor of the MyD88/TRAF6 complex, or dominant-negative TAK1, IL-17A-inducible gene expression and HBD-2 promoter activity were reduced. Additionally, IL-17A-induced p65 and p50 NF-κB activations were confirmed and their nuclear translocations were down-regulated by siRNAs of TRAF6 and TAK1. These results suggest that two independent and indispensable signaling pathways - 1) JAK1-associated PI3K signaling and 2) Act1/TRAF6/TAK1-mediated NF-κB activation - are stimulated by IL-17A to regulate gene induction in human airway epithelial cells.",
author = "Fei Huang and Kao, {Cheng Yuan} and Shinichiro Wachi and Philip Thai and Jisu Ryu and Reen Wu",
year = "2007",
month = "11",
day = "15",
language = "English (US)",
volume = "179",
pages = "6504--6513",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "10",

}

TY - JOUR

T1 - Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1- dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells

AU - Huang, Fei

AU - Kao, Cheng Yuan

AU - Wachi, Shinichiro

AU - Thai, Philip

AU - Ryu, Jisu

AU - Wu, Reen

PY - 2007/11/15

Y1 - 2007/11/15

N2 - Through DNA microarray analysis and quantitative PCR verification, we have identified additional IL-17A-inducible genes-IL-19, CXCL-1, -2, -3, -5, and -6 - in well-differentiated normal human bronchial epithelial cells. These genes, similar to previously described human β-defensin-2 (HBD-2) and CCL-20, were induced by a basolateral treatment of IL-17A, and regulated by PI3K signaling and NF-κB activation. For PI3K signaling, increases of cellular PIP 3 and phosphorylation of downstream molecules, such as Akt and glycogen synthase kinase-3β (GSK3β) (S9), were detected. Induced gene expression and HBD-2 promoter activity were attenuated by LY294002, p110α small-interfering RNA (siRNA), as well as by an overexpression of constitutively active GSK3β(S9A) or wild-type phosphatase and tensin homolog. Increased phosphorylation of JAK1/2 after IL-17A treatment was detected in primary normal human bronchial epithelium cells. Transfected siRNAs of JAK molecules and JAK inhibitor I decreased IL-17A-induced gene expression and GSK3β(S9) phosphorylation. However, both JAK inhibitor I and PI3K inhibitor had no effect on the DNA-binding activities of p65 and p50 to NF-κB consensus sequences. This result suggested a JAK-associated PI3K signaling axis is independent from NF-κB activation. With siRNA to knockdown STIR (similar expression to fibroblast growth factor and IL-17R; Toll-IL-1R)-related signaling molecules, such as Act1, TNFR-associated factor 6 (TRAF6), and TGF-β-activated kinase 1 (TAK1), and transfection of A52R, an inhibitor of the MyD88/TRAF6 complex, or dominant-negative TAK1, IL-17A-inducible gene expression and HBD-2 promoter activity were reduced. Additionally, IL-17A-induced p65 and p50 NF-κB activations were confirmed and their nuclear translocations were down-regulated by siRNAs of TRAF6 and TAK1. These results suggest that two independent and indispensable signaling pathways - 1) JAK1-associated PI3K signaling and 2) Act1/TRAF6/TAK1-mediated NF-κB activation - are stimulated by IL-17A to regulate gene induction in human airway epithelial cells.

AB - Through DNA microarray analysis and quantitative PCR verification, we have identified additional IL-17A-inducible genes-IL-19, CXCL-1, -2, -3, -5, and -6 - in well-differentiated normal human bronchial epithelial cells. These genes, similar to previously described human β-defensin-2 (HBD-2) and CCL-20, were induced by a basolateral treatment of IL-17A, and regulated by PI3K signaling and NF-κB activation. For PI3K signaling, increases of cellular PIP 3 and phosphorylation of downstream molecules, such as Akt and glycogen synthase kinase-3β (GSK3β) (S9), were detected. Induced gene expression and HBD-2 promoter activity were attenuated by LY294002, p110α small-interfering RNA (siRNA), as well as by an overexpression of constitutively active GSK3β(S9A) or wild-type phosphatase and tensin homolog. Increased phosphorylation of JAK1/2 after IL-17A treatment was detected in primary normal human bronchial epithelium cells. Transfected siRNAs of JAK molecules and JAK inhibitor I decreased IL-17A-induced gene expression and GSK3β(S9) phosphorylation. However, both JAK inhibitor I and PI3K inhibitor had no effect on the DNA-binding activities of p65 and p50 to NF-κB consensus sequences. This result suggested a JAK-associated PI3K signaling axis is independent from NF-κB activation. With siRNA to knockdown STIR (similar expression to fibroblast growth factor and IL-17R; Toll-IL-1R)-related signaling molecules, such as Act1, TNFR-associated factor 6 (TRAF6), and TGF-β-activated kinase 1 (TAK1), and transfection of A52R, an inhibitor of the MyD88/TRAF6 complex, or dominant-negative TAK1, IL-17A-inducible gene expression and HBD-2 promoter activity were reduced. Additionally, IL-17A-induced p65 and p50 NF-κB activations were confirmed and their nuclear translocations were down-regulated by siRNAs of TRAF6 and TAK1. These results suggest that two independent and indispensable signaling pathways - 1) JAK1-associated PI3K signaling and 2) Act1/TRAF6/TAK1-mediated NF-κB activation - are stimulated by IL-17A to regulate gene induction in human airway epithelial cells.

UR - http://www.scopus.com/inward/record.url?scp=38449110915&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38449110915&partnerID=8YFLogxK

M3 - Article

C2 - 17982039

AN - SCOPUS:38449110915

VL - 179

SP - 6504

EP - 6513

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 10

ER -