Recombinant factor VIII in the management of hemophilia A

Current use and future promise

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Hemophilia A is a rare inherited bleeding disorder due to mutation of the gene that encodes the coagulation protein factor VIII. Historically, prior to the availability of treatment with factor VIII preparations, most boys died from uncontrolled bleeding, either spontaneous bleeding or after injury, before reaching 20 years of age. One of the most impressive triumphs of modern medicine is that with current recombinant factor VIII replacement therapy, a boy born in the 21st century with severe hemophilia A can anticipate a normal life expectancy with essentially no permanent complications from bleeding. For severe hemophilia A, current optimal treatment should have two goals: first, to provide sufficient factor VIII to prevent spontaneous bleeding, and second, to provide sufficient factor VIII to have normal coagulation function after any trauma. However, the replacement therapy requires tremendous resources for effective use, and remains extraordinarily expensive. Thus there are opportunities for further advances in therapy for hemophilia A. Two major concerns continue to trouble current optimal treatment approaches: some patients will develop neutralizing antibodies during the first 50 infusions of therapeutic factor VIII, and second, to administer therapeutic factor VIII every other day in young boys often requires placement of a central venous access device, and such use carries the life-threatening risks of infection and thrombosis. Because of the effectiveness of current therapy, any new developments in treatment will require significant concerns for safety, both immediate and in the long term. A number of research groups seek to prolong the biological efficacy of infused recombinant factor VIII. Currently, one such promising development is in the advanced stages of clinical trial. The goals will be to improve further the quality of life of an individual with severe hemophilia A, and to reduce the burden of current treatment strategies on families and medical resources. Hopefully, the hemophilia community will continue to participate actively in the clinical trials needed to address these new challenges.

Original languageEnglish (US)
Pages (from-to)391-402
Number of pages12
JournalTherapeutics and Clinical Risk Management
Volume5
Issue number1
StatePublished - 2009

Fingerprint

Factor VIII
Hemophilia A
Coagulation
management
Antibodies
Medicine
Genes
Availability
Proteins
Hemorrhage
Therapeutics
life expectancy
resources
trauma
quality of life
medicine
Clinical Trials
Neutralizing Antibodies
community
Modern 1601-history

Keywords

  • Factor VIII
  • Hemophilia A
  • Prophylaxis treatment
  • Recombinant proteins

ASJC Scopus subject areas

  • Pharmacology (medical)
  • Medicine(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)
  • Safety Research
  • Chemical Health and Safety

Cite this

@article{66c7acc0651240e0b029834b69cdd9dc,
title = "Recombinant factor VIII in the management of hemophilia A: Current use and future promise",
abstract = "Hemophilia A is a rare inherited bleeding disorder due to mutation of the gene that encodes the coagulation protein factor VIII. Historically, prior to the availability of treatment with factor VIII preparations, most boys died from uncontrolled bleeding, either spontaneous bleeding or after injury, before reaching 20 years of age. One of the most impressive triumphs of modern medicine is that with current recombinant factor VIII replacement therapy, a boy born in the 21st century with severe hemophilia A can anticipate a normal life expectancy with essentially no permanent complications from bleeding. For severe hemophilia A, current optimal treatment should have two goals: first, to provide sufficient factor VIII to prevent spontaneous bleeding, and second, to provide sufficient factor VIII to have normal coagulation function after any trauma. However, the replacement therapy requires tremendous resources for effective use, and remains extraordinarily expensive. Thus there are opportunities for further advances in therapy for hemophilia A. Two major concerns continue to trouble current optimal treatment approaches: some patients will develop neutralizing antibodies during the first 50 infusions of therapeutic factor VIII, and second, to administer therapeutic factor VIII every other day in young boys often requires placement of a central venous access device, and such use carries the life-threatening risks of infection and thrombosis. Because of the effectiveness of current therapy, any new developments in treatment will require significant concerns for safety, both immediate and in the long term. A number of research groups seek to prolong the biological efficacy of infused recombinant factor VIII. Currently, one such promising development is in the advanced stages of clinical trial. The goals will be to improve further the quality of life of an individual with severe hemophilia A, and to reduce the burden of current treatment strategies on families and medical resources. Hopefully, the hemophilia community will continue to participate actively in the clinical trials needed to address these new challenges.",
keywords = "Factor VIII, Hemophilia A, Prophylaxis treatment, Recombinant proteins",
author = "Powell, {Jerry S}",
year = "2009",
language = "English (US)",
volume = "5",
pages = "391--402",
journal = "Therapeutics and Clinical Risk Management",
issn = "1176-6336",
publisher = "Dove Medical Press Ltd.",
number = "1",

}

TY - JOUR

T1 - Recombinant factor VIII in the management of hemophilia A

T2 - Current use and future promise

AU - Powell, Jerry S

PY - 2009

Y1 - 2009

N2 - Hemophilia A is a rare inherited bleeding disorder due to mutation of the gene that encodes the coagulation protein factor VIII. Historically, prior to the availability of treatment with factor VIII preparations, most boys died from uncontrolled bleeding, either spontaneous bleeding or after injury, before reaching 20 years of age. One of the most impressive triumphs of modern medicine is that with current recombinant factor VIII replacement therapy, a boy born in the 21st century with severe hemophilia A can anticipate a normal life expectancy with essentially no permanent complications from bleeding. For severe hemophilia A, current optimal treatment should have two goals: first, to provide sufficient factor VIII to prevent spontaneous bleeding, and second, to provide sufficient factor VIII to have normal coagulation function after any trauma. However, the replacement therapy requires tremendous resources for effective use, and remains extraordinarily expensive. Thus there are opportunities for further advances in therapy for hemophilia A. Two major concerns continue to trouble current optimal treatment approaches: some patients will develop neutralizing antibodies during the first 50 infusions of therapeutic factor VIII, and second, to administer therapeutic factor VIII every other day in young boys often requires placement of a central venous access device, and such use carries the life-threatening risks of infection and thrombosis. Because of the effectiveness of current therapy, any new developments in treatment will require significant concerns for safety, both immediate and in the long term. A number of research groups seek to prolong the biological efficacy of infused recombinant factor VIII. Currently, one such promising development is in the advanced stages of clinical trial. The goals will be to improve further the quality of life of an individual with severe hemophilia A, and to reduce the burden of current treatment strategies on families and medical resources. Hopefully, the hemophilia community will continue to participate actively in the clinical trials needed to address these new challenges.

AB - Hemophilia A is a rare inherited bleeding disorder due to mutation of the gene that encodes the coagulation protein factor VIII. Historically, prior to the availability of treatment with factor VIII preparations, most boys died from uncontrolled bleeding, either spontaneous bleeding or after injury, before reaching 20 years of age. One of the most impressive triumphs of modern medicine is that with current recombinant factor VIII replacement therapy, a boy born in the 21st century with severe hemophilia A can anticipate a normal life expectancy with essentially no permanent complications from bleeding. For severe hemophilia A, current optimal treatment should have two goals: first, to provide sufficient factor VIII to prevent spontaneous bleeding, and second, to provide sufficient factor VIII to have normal coagulation function after any trauma. However, the replacement therapy requires tremendous resources for effective use, and remains extraordinarily expensive. Thus there are opportunities for further advances in therapy for hemophilia A. Two major concerns continue to trouble current optimal treatment approaches: some patients will develop neutralizing antibodies during the first 50 infusions of therapeutic factor VIII, and second, to administer therapeutic factor VIII every other day in young boys often requires placement of a central venous access device, and such use carries the life-threatening risks of infection and thrombosis. Because of the effectiveness of current therapy, any new developments in treatment will require significant concerns for safety, both immediate and in the long term. A number of research groups seek to prolong the biological efficacy of infused recombinant factor VIII. Currently, one such promising development is in the advanced stages of clinical trial. The goals will be to improve further the quality of life of an individual with severe hemophilia A, and to reduce the burden of current treatment strategies on families and medical resources. Hopefully, the hemophilia community will continue to participate actively in the clinical trials needed to address these new challenges.

KW - Factor VIII

KW - Hemophilia A

KW - Prophylaxis treatment

KW - Recombinant proteins

UR - http://www.scopus.com/inward/record.url?scp=77649185253&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77649185253&partnerID=8YFLogxK

M3 - Article

VL - 5

SP - 391

EP - 402

JO - Therapeutics and Clinical Risk Management

JF - Therapeutics and Clinical Risk Management

SN - 1176-6336

IS - 1

ER -