Recasting the theory of mosquito-borne pathogen transmission dynamics and control

David L. Smitha, T. Alex Perkin, Robert C. Reiner, Chris Barker, Tianchan Niu, Luis Fernando Chaves, Alicia M. Ellis, Dylan B. George, Arnaud Le Menach, Juliet R.C. Pulliam, Donal Bisanzio, Caroline Buckee, Christinah Chiyaka, Derek A.T. Cummings, Andres J. Garcia, Michelle L. Gatton, Peter W. Gethingv, David M. Hartley, Geoffrey Johnston, Eili Y. KleinEdwin Michael, Alun L. Lloyd, David M. Pigott, William Reisen, Nick Ruktanonchai, Brajendra K. Singh, Jeremy Stoller, Andrew J. Tatem, Uriel Kitron, H. Charles J. Godfray, Justin M. Cohen, Simon I. Hay, Thomas W. Scott

Research output: Contribution to journalReview article

88 Scopus citations

Abstract

Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.

Original languageEnglish (US)
Article numbertru026
Pages (from-to)185-197
Number of pages13
JournalTransactions of the Royal Society of Tropical Medicine and Hygiene
Volume108
Issue number4
DOIs
StatePublished - Jan 1 2014

Keywords

  • Dengue
  • Filariasis
  • Malaria
  • Mosquito-borne pathogen transmission
  • Vector control
  • West nile virus

ASJC Scopus subject areas

  • Parasitology
  • Public Health, Environmental and Occupational Health
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Recasting the theory of mosquito-borne pathogen transmission dynamics and control'. Together they form a unique fingerprint.

  • Cite this

    Smitha, D. L., Perkin, T. A., Reiner, R. C., Barker, C., Niu, T., Chaves, L. F., Ellis, A. M., George, D. B., Menach, A. L., Pulliam, J. R. C., Bisanzio, D., Buckee, C., Chiyaka, C., Cummings, D. A. T., Garcia, A. J., Gatton, M. L., Gethingv, P. W., Hartley, D. M., Johnston, G., ... Scott, T. W. (2014). Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108(4), 185-197. [tru026]. https://doi.org/10.1093/trstmh/tru026