Rapid formation of functional muscle in vitro using fibrin gels

Yen Chih Huang, Robert G. Dennis, Lisa Larkin, Keith Baar

Research output: Contribution to journalArticlepeer-review

219 Scopus citations


The transition of a muscle cell from a differentiated myotube into an adult myofiber is largely unstudied. This is primarily due to the difficulty of isolating specific developmental stimuli in vivo and the inability to maintain viable myotubes in culture for sufficient lengths of time. To address these limitations, a novel method for rapidly generating three-dimensional engineered muscles using fibrin gel casting has been developed. Myoblasts were seeded and differentiated on top of a fibrin gel. Cell-mediated contraction of the gel around artificial anchors placed 12 mm apart culminates 10 days after plating in a tubular structure of small myotubes (10-μm diameter) surrounded by a fibrin gel matrix. These tissues can be connected to a force transducer and electrically stimulated between parallel platinum electrodes to monitor physiological function. Three weeks after plating, the three-dimensional engineered muscle generated a maximum twitch force of 329 ± 26.3 μN and a maximal tetanic force of 805.8 ± 55 μN. The engineered muscles demonstrated normal physiological function including length-tension and force-frequency relationships. Treatment with IGF-I resulted in a 50% increase in force production, demonstrating that these muscles responded to hormonal interventions. Although the force production was maximal at 3 wk, constructs can be maintained in culture for up to 6 wk with no intervention. We conclude that fibrin-based gels provide a novel method to engineer three-dimensional functional muscle tissue and that these tissues may be used to model the development of skeletal muscle in vitro.

Original languageEnglish (US)
Pages (from-to)706-713
Number of pages8
JournalJournal of Applied Physiology
Issue number2
StatePublished - Feb 2005
Externally publishedYes


  • Developmental biology
  • Three dimensional
  • Tissue engineering

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation


Dive into the research topics of 'Rapid formation of functional muscle in vitro using fibrin gels'. Together they form a unique fingerprint.

Cite this