Quantitative and qualitative effects of isoflurane on movement occurring after noxious stimulation

Joseph F. Antognini, Xiao Wei Wang, Earl Carstens

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Background: Anesthetic potency is assessed by determination of the anesthetic concentration that prevents gross, purposeful movement in response to noxious stimulation. It is unclear whether anesthetics cause a progressive decrease in the number and force of limb movements evoked by noxious stimulation, or a step decrease (consistent with an all-or-none effect at the site of action). The authors hypothesized that isoflurane and halothane would progressively depress the movement response. Methods: Isoflurane minimum alveolar concentration (MAC) was determined in rats (N = 14) using a clamp applied to a hind paw. Lateral head movements and flexions of the forelimbs and hindlimbs were measured with force transducers. Isoflurane was adjusted to 0.6, 0.9, 1.1, and 1.4 MAC, the noxious stimulus applied, and the force and number of limb and head movements determined. Force and movement determinations were made in seven additional halothane-anesthetized rats. Results: Isoflurane MAC was 1.3 ± 0.1%. In general, if movement occurred after application of the noxious clamp, the head and all limbs were involved. At 0.6 MAC, the median number of extremity and head movements was 3.5 (10th- 90th percentile, 2.0-11.4) with force generated per movement (force/movement) = 6.4 (2.0-13.2) N-s. Movement number decreased to 2.1 (0.25-4.2) at 0.9 MAC (P < 0.05), but force/movement was unchanged at 4.5 (0.4-15.1) N-s (Newton- second). At 1.1 MAC, movement number and force/movement decreased to 0.2 (0.0-1.5) and 0.1 (0.0-3.2) N-s, respectively (P < 0.005). No significant movement occurred at 1.4 MAC. The halothane-anesthetized rats had similar findings, although at 0.6 MAC they generated more movements (10.5 [5.2-19.8]) than the rats receiving isoflurane (P < 0.05). Conclusions: The results indicate that increasing anesthetic concentration from 0.6 to 0.9 MAC had little effect on the motor system controlling the force of limb movements, and the neural system generating repeated limb movements was depressed, consistent with a differential anesthetic effect at separate sites.

Original languageEnglish (US)
Pages (from-to)1064-1071
Number of pages8
JournalAnesthesiology
Volume91
Issue number4
DOIs
StatePublished - Oct 1999
Externally publishedYes

Fingerprint

Isoflurane
Extremities
Anesthetics
Head Movements
Halothane
Forelimb
Hindlimb
Transducers
Head

Keywords

  • Brain
  • Pain
  • Spinal cord

ASJC Scopus subject areas

  • Anesthesiology and Pain Medicine

Cite this

Quantitative and qualitative effects of isoflurane on movement occurring after noxious stimulation. / Antognini, Joseph F.; Wang, Xiao Wei; Carstens, Earl.

In: Anesthesiology, Vol. 91, No. 4, 10.1999, p. 1064-1071.

Research output: Contribution to journalArticle

Antognini, Joseph F. ; Wang, Xiao Wei ; Carstens, Earl. / Quantitative and qualitative effects of isoflurane on movement occurring after noxious stimulation. In: Anesthesiology. 1999 ; Vol. 91, No. 4. pp. 1064-1071.
@article{c19174193f834ff7b031f4341b688ba1,
title = "Quantitative and qualitative effects of isoflurane on movement occurring after noxious stimulation",
abstract = "Background: Anesthetic potency is assessed by determination of the anesthetic concentration that prevents gross, purposeful movement in response to noxious stimulation. It is unclear whether anesthetics cause a progressive decrease in the number and force of limb movements evoked by noxious stimulation, or a step decrease (consistent with an all-or-none effect at the site of action). The authors hypothesized that isoflurane and halothane would progressively depress the movement response. Methods: Isoflurane minimum alveolar concentration (MAC) was determined in rats (N = 14) using a clamp applied to a hind paw. Lateral head movements and flexions of the forelimbs and hindlimbs were measured with force transducers. Isoflurane was adjusted to 0.6, 0.9, 1.1, and 1.4 MAC, the noxious stimulus applied, and the force and number of limb and head movements determined. Force and movement determinations were made in seven additional halothane-anesthetized rats. Results: Isoflurane MAC was 1.3 ± 0.1{\%}. In general, if movement occurred after application of the noxious clamp, the head and all limbs were involved. At 0.6 MAC, the median number of extremity and head movements was 3.5 (10th- 90th percentile, 2.0-11.4) with force generated per movement (force/movement) = 6.4 (2.0-13.2) N-s. Movement number decreased to 2.1 (0.25-4.2) at 0.9 MAC (P < 0.05), but force/movement was unchanged at 4.5 (0.4-15.1) N-s (Newton- second). At 1.1 MAC, movement number and force/movement decreased to 0.2 (0.0-1.5) and 0.1 (0.0-3.2) N-s, respectively (P < 0.005). No significant movement occurred at 1.4 MAC. The halothane-anesthetized rats had similar findings, although at 0.6 MAC they generated more movements (10.5 [5.2-19.8]) than the rats receiving isoflurane (P < 0.05). Conclusions: The results indicate that increasing anesthetic concentration from 0.6 to 0.9 MAC had little effect on the motor system controlling the force of limb movements, and the neural system generating repeated limb movements was depressed, consistent with a differential anesthetic effect at separate sites.",
keywords = "Brain, Pain, Spinal cord",
author = "Antognini, {Joseph F.} and Wang, {Xiao Wei} and Earl Carstens",
year = "1999",
month = "10",
doi = "10.1097/00000542-199910000-00027",
language = "English (US)",
volume = "91",
pages = "1064--1071",
journal = "Anesthesiology",
issn = "0003-3022",
publisher = "Lippincott Williams and Wilkins",
number = "4",

}

TY - JOUR

T1 - Quantitative and qualitative effects of isoflurane on movement occurring after noxious stimulation

AU - Antognini, Joseph F.

AU - Wang, Xiao Wei

AU - Carstens, Earl

PY - 1999/10

Y1 - 1999/10

N2 - Background: Anesthetic potency is assessed by determination of the anesthetic concentration that prevents gross, purposeful movement in response to noxious stimulation. It is unclear whether anesthetics cause a progressive decrease in the number and force of limb movements evoked by noxious stimulation, or a step decrease (consistent with an all-or-none effect at the site of action). The authors hypothesized that isoflurane and halothane would progressively depress the movement response. Methods: Isoflurane minimum alveolar concentration (MAC) was determined in rats (N = 14) using a clamp applied to a hind paw. Lateral head movements and flexions of the forelimbs and hindlimbs were measured with force transducers. Isoflurane was adjusted to 0.6, 0.9, 1.1, and 1.4 MAC, the noxious stimulus applied, and the force and number of limb and head movements determined. Force and movement determinations were made in seven additional halothane-anesthetized rats. Results: Isoflurane MAC was 1.3 ± 0.1%. In general, if movement occurred after application of the noxious clamp, the head and all limbs were involved. At 0.6 MAC, the median number of extremity and head movements was 3.5 (10th- 90th percentile, 2.0-11.4) with force generated per movement (force/movement) = 6.4 (2.0-13.2) N-s. Movement number decreased to 2.1 (0.25-4.2) at 0.9 MAC (P < 0.05), but force/movement was unchanged at 4.5 (0.4-15.1) N-s (Newton- second). At 1.1 MAC, movement number and force/movement decreased to 0.2 (0.0-1.5) and 0.1 (0.0-3.2) N-s, respectively (P < 0.005). No significant movement occurred at 1.4 MAC. The halothane-anesthetized rats had similar findings, although at 0.6 MAC they generated more movements (10.5 [5.2-19.8]) than the rats receiving isoflurane (P < 0.05). Conclusions: The results indicate that increasing anesthetic concentration from 0.6 to 0.9 MAC had little effect on the motor system controlling the force of limb movements, and the neural system generating repeated limb movements was depressed, consistent with a differential anesthetic effect at separate sites.

AB - Background: Anesthetic potency is assessed by determination of the anesthetic concentration that prevents gross, purposeful movement in response to noxious stimulation. It is unclear whether anesthetics cause a progressive decrease in the number and force of limb movements evoked by noxious stimulation, or a step decrease (consistent with an all-or-none effect at the site of action). The authors hypothesized that isoflurane and halothane would progressively depress the movement response. Methods: Isoflurane minimum alveolar concentration (MAC) was determined in rats (N = 14) using a clamp applied to a hind paw. Lateral head movements and flexions of the forelimbs and hindlimbs were measured with force transducers. Isoflurane was adjusted to 0.6, 0.9, 1.1, and 1.4 MAC, the noxious stimulus applied, and the force and number of limb and head movements determined. Force and movement determinations were made in seven additional halothane-anesthetized rats. Results: Isoflurane MAC was 1.3 ± 0.1%. In general, if movement occurred after application of the noxious clamp, the head and all limbs were involved. At 0.6 MAC, the median number of extremity and head movements was 3.5 (10th- 90th percentile, 2.0-11.4) with force generated per movement (force/movement) = 6.4 (2.0-13.2) N-s. Movement number decreased to 2.1 (0.25-4.2) at 0.9 MAC (P < 0.05), but force/movement was unchanged at 4.5 (0.4-15.1) N-s (Newton- second). At 1.1 MAC, movement number and force/movement decreased to 0.2 (0.0-1.5) and 0.1 (0.0-3.2) N-s, respectively (P < 0.005). No significant movement occurred at 1.4 MAC. The halothane-anesthetized rats had similar findings, although at 0.6 MAC they generated more movements (10.5 [5.2-19.8]) than the rats receiving isoflurane (P < 0.05). Conclusions: The results indicate that increasing anesthetic concentration from 0.6 to 0.9 MAC had little effect on the motor system controlling the force of limb movements, and the neural system generating repeated limb movements was depressed, consistent with a differential anesthetic effect at separate sites.

KW - Brain

KW - Pain

KW - Spinal cord

UR - http://www.scopus.com/inward/record.url?scp=0344994597&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0344994597&partnerID=8YFLogxK

U2 - 10.1097/00000542-199910000-00027

DO - 10.1097/00000542-199910000-00027

M3 - Article

C2 - 10519510

AN - SCOPUS:0344994597

VL - 91

SP - 1064

EP - 1071

JO - Anesthesiology

JF - Anesthesiology

SN - 0003-3022

IS - 4

ER -